3.1.6 実規模実験建物モデルの地震応答解析

(1) 業務の内容

(a) 業務の目的

大地震時における救急救命、被災後の生命維持の拠点となる医療施設など重要施設の、 機能保持および耐震性向上を目的として、実規模実験の建物モデル、および建物モデル内 に設置された内部機器の地震応答解析を行う。

(b) 平成20年度業務目的

重要施設の実規模実験のための建物モデルの事前地震応答解析を実施し、建物の応答性 状把握、実験の安全性の検討、実験で用いる地震動の選択および入力レベルの選定を行う。

(c) 担当者

所属機関	役職	氏名
独立行政法人防災科学技術研究所	主任研究員	佐藤 栄児
兵庫耐震工学研究センター	企画室長	井上 貴仁
	主任研究員	梶原 浩一
	主任研究員	長江 拓也
	研究員	酒井 久伸
	客員研究員	福山 國夫
東京農工大学	准教授	鎌田 崇義
	教務職員	池西 俊仁
	大学院生	丸山 敦士

(2) 平成20年度の成果

(a) 業務の要約

重要施設の実規模実験実施において、建物の応答性状把握、実験の安全性の検討、地震 動の選択および入力レベルの選定を行うため、建物モデルの事前地震応答解析を実施した。

応答解析では、建物(試験体)の設計に用いられる条件による「耐震設計用モデル」で の応答解析と、建物の実状の条件を用いた「耐震安全検討モデル」での応答解析を行い、 それぞれの結果から、各種実験条件の選定を行う。耐震構造においては、各フロアの応答 加速度について、弾性および初期塑性領域において実験結果とほぼ一致しており、モデル の妥当性が確認された。また免震構造においては、短周期および長周期地震動とも各フロ アの応答加速度および免震層の相対変位とも実験結果とのほぼ一致しておりモデルの妥当 性が確認された。

さらに、内部機器(主にキャスター機器)における応答解析と実験結果がほぼ一致して おりモデル構築の妥当性が確認された。 (b) 業務の成果

1) 建築物概要

外形平面形状は X 方向 10.5m×Y 方向 12.4m の長方形扇形の平面形状であり、1 階に X 線 撮影室、情報通信室、2 階に人工透析室、診察室、3 階に手術室、集中治療室(ICU)、4 階 に病室、情報通信室が配されている。屋上階には高架水槽がある。

各階平面は、4 隅に隅柱(600×600mm)、各辺に壁柱(300×2,100mm)が配置されており 建物内には柱は無く、各部屋は乾式間仕切で仕切られている。各階の大梁は 250×900mm~ 1,250mm で B~C 通間において短スパンの梁となっている。

各階ともほぼ同様の平面であり、断面形状は整形である。階高は、1、3階は3.90m、2、 4階は3.40mとなっている。

主体構造は鉄筋コンクリート構造であり、X 方向(短手方向)4 隅の柱で水平力の30~50%程度、壁状の柱で水平力の50~70%程度を負担している。Y 方向(長手方向)は4 隅の柱で水平力の25~50%程度、壁状の柱で水平力の50~75%程度を負担している。躯体構築は現場打ちコンクリート工法とし、コンクリート強度はFc24~30を採用している。

試験体は耐震建築物を想定して震動台に PC 鋼棒で固定された状態と、免震建築物を想 定して震動台と建築物の間に免震装置を設置した状態の2種類がある。ここでは、耐震建 築物としての解析を行った後、免震構造の解析を行う。

2) 数値解析モデル

数値解析は、静的な「荷重増分解析」、「限界耐力計算」(試験体設計用)と、動的な「地 震応答解析」(実験応答予測および安全性検討)を行った。

「荷重増分解析」および「地震応答解析」では、当初の設計用の各パラメータを用いた 「耐震設計用モデル」と試験体の建設が進み各パラメータを実状の試験体のものにあわせ た「耐震安全検討モデル」がある。

「耐震安全検討モデル」は、実験時の入力地震動時の安全性(試験体の破壊状態)の検 討のため、耐震設計用モデルに鉄筋、コンクリートの材料強度、梁の曲げ耐力に考慮する スラブ筋量、柱および梁の降伏後の剛性低下率を実状に合わせて考慮したモデルに実験時 の入力地震動を作用させた場合の応答性状を把握することを目的としている。それぞれの モデルの主な違いを表1に示すとともに、以下の項でそれらについて述べる。

表1 各モデル概要

角辺	析エデルタ	履歴	材料強度 (コンクリ	梁の曲げ 耐力に考	降伏 剛性4	後の 私下率
乃午	/л с <i>) / к</i> д	特性	ート・ 鉄筋)	慮するス ラブ筋量	柱	大梁
荷重 増分 解析	耐震設計用 荷重増分 解析モデル	-	設計用 強度	5-D10	1/1,000	1/1,000
麻切 モデ ル	耐震安全検討 荷重造分 解析モデル	-	実強度	実状	1/100	1/100
限界耐	力計算用モデル	-	設計用 強度	5-D10	1/1,000	1/1,000
部材 系地 電広	耐震 設計用 モデル	竹中 劣化型	設計用 強度	5-D10	1/1,000	1/1,000
_辰 応 答解 析モ デル	耐震安全 検討 モデル	竹中 劣化型	実強度	実状	1/100	1/100

※ 「設計用強度」とは、コンクリートおよび鉄筋の材料強度として通常設計に用いる値 を用いている

※ スラブ筋量「実状」とは、大梁の曲げ耐力を算定時のスラブ筋量として実状を考慮した値(片側 2m の範囲のスラブ上下筋)を用いている

a) 耐震設計用モデル

部材系立体架構を用い、各パラメータおよび解析条件は、設計用などの数値を用い解析 を行う。これにより、設計用の試験体モデルとしての各入力地震波による応答性状の把握 と設計時における安全性および余裕度について検討する。主な、解析条件を以下に示す。

- ・剛性低下率:降伏後の剛性低下率は初期剛性の1/1,000(全部材)
- ・梁曲げ耐力に考慮するスラブ筋: 5-D10 (SD295)
- ・材料強度(コンクリート・鉄筋):設計用強度

b) 耐震安全検討モデル

部材系立体架構を用い、各パラメータおよび解析条件は、実状により近い数値を用い解 析を行う。これにより、実験時の入力地震動時の安全性の検討および応答性状を把握する。 主な、解析条件を以下に示す。

- ・剛性低下率: 柱梁の降伏後の剛性低下率は初期剛性の 1/100
- ・梁曲げ耐力に考慮するスラブ筋量:片側 2m の範囲で、スラブ上下筋実状
- ・材料強度(コンクリート・鉄筋):材料強度は試験結果による値 ただしコンクリートの圧縮強度は材齢28日の結果の平均値とし(打設箇所で は区別しない)、コンクリートのヤング係数は「鉄筋コンクリート構造設計規 準・同解説(1999)」P.6の式を用いて算出

コンクリートの圧縮試験結果を表2に、鉄筋の引張試験結果を表3に示す。

設計基準強度	使用箇所	压縮強度 Fc (N/mm ²)	気乾単位体積 重量γ(kN/m ³)	ヤング係数 Ec (N/mm ²)
Fc24	下記以外	40.88	23.5	$2.83\! imes\!10^4$
Fc30	1F 大梁	39.45	23.5	$2.79\! imes\!10^4$

表2 コンクリート圧縮試験結果

表 3 鉄筋引張試験結果

鉄筋	使田笠正	降伏応力 fy	ヤング係数	ヤング係数比		
径・種別	使用固別	(N/mm^2)	$Es (N/mm^2)$	Fc24	Fc30	
D10,SD295	床筋,肋筋	379	-	-	-	
D13,SD295	床筋,带筋,肋筋	346	-	-	-	
D22,SD345	大梁主筋	374	$2.00 imes10^5$	7.08	7.16	
D25,SD345	柱,大梁主筋	384	$1.89 imes10^5$	6.69	6.77	

3) 地震応答解析モデル

荷重増分解析を行った部材系立体架構を用いて地震応答解析を行う。応答解析には HYPER-SD((株)竹中工務店開発のプログラム)を用いた。なお、解析に当たっては、竹中 工務店・鹿島孝、島野幸弘、石川裕次、池田周英の四氏に多大な協力を得た。

主な解析条件を以下に示す。

解析モデル:静的弾塑性解析で用いた全体モデルの架構

応答解析法:直接数值積分法(Newmark- β 法、 $\beta = 1/4$ 平均加速度法)

質量:各節点に配置し、各階剛床

剛性、復元力特性:柱・梁の曲げ特性に竹中劣化型 Tri-Linear モデル、せん断特 性に修正 D-Tri-Linear モデル(ただし、せん断ひび割れによ る剛性低下は無視する)、柱の軸特性はスリップ型 Bi-Linear モデル

基礎支点:固定支持

- 柱梁接合部:剛域とし剛域入り込み寸法は部材成の1/4
- 減衰マトリクス:瞬間剛性比例型
- 減衰定数:3%
- 減衰特性:減衰は内部粘性減衰型とし、要素剛性マトリクスと要素に定義された 減衰定数から減衰マトリクスを作り、それらを重ね合わせて全体減衰 マトリクスと設定

剛性低下率:初期剛性に対する降伏後の剛性低下率はモデルによる

梁曲げ耐力に考慮するスラブ筋:モデルによる

部材系モデルのモデル図を図1示す。

図1 部材系地震応答解析モデル

4)入力地震動

入力地震動波形は南関東地震横浜、エルセントロ(レベル2)、JMA神戸、JR 鷹取の4 波とする。

表4に本検討に用いた入力地震動波形の最大速度振幅及び加速度振幅を、図2~図3に 入力地震動の加速度時刻歴波形を示す。なお試験体のX方向に地震波のEW成分を、Y方向 にNS成分を入力する。

话拓	世雪乱冲成	速度	加速度	解析時間
1里 3貝	地展動波形	(cm/s)	(cm/s^2)	(s)
陆宽译	南関東地震横浜 EW	44	479	200.0
(突)疑(汉	南関東地震横浜 NS	43	499	200.0
	エルセントロ (レベル 2) EW	48	314	53.8
	エルセントロ(レベル 2) NS	46	511	53.8
	JMA 神戸 EW	72	617	40.9
細油油	JMA 神戸 NS	83	818	40.9
館側似	JMA 神戸 UD	39	332	40.9
	JR 鷹取 EW	128	666	120.0
	JR 鷹取 NS	134	642	120.0
	JR 鷹取 UD	19	290	120.0

表 4 入力地震動波形の最大速度振幅・加速度振幅

5) 荷重增分解析

a) 耐震設計用解析モデルによる荷重増分解析

±0°、±90°加力時の荷重増分解析結果のうち、表5に地震荷重算定結果、表6に保有 水平耐力算定結果を示す。また図4にQ(層せん断力)-δ(層間変形)グラフ、図5、図 6に保有水平耐力時ヒンジ図(R=1/100時点)を各モデルについて示す。

方向 (ケース)	階	階 高 (m)	積載荷 重	固定荷 重	各階重 量 (kN)	合計重 量 (kN)	平均 重量 (kN/m ²)	Ai 分布	層せん 断力係 数 C	層せん 断力 Q(kN)	層水平力 H(kN)
	R	-	103	962	1,065	-	8.25	-	-	-	344
	4	3.40	104	1,107	1,211	1,065	9.30	1.62	0.32	344	254
Х	3	3.90	104	1,107	1,211	2,276	9.30	1.31	0.26	598	197
(EY)	2	3.40	104	1,147	1,252	3,488	9.61	1.14	0.23	795	152
	1	3.90	110	2,898	3,007	4,739	21.97	1.00	0.20	948	301
	В	1.61	0	587	587	7,746	0.00	-	-	1,249	56
	R	-	103	962	1,065	-	8.25	-	-	-	344
	4	3.40	104	1,107	1,211	1,065	9.30	1.62	0.32	344	254
Y	3	3.90	104	1,107	1,211	2,276	9.30	1.31	0.26	598	197
(EX)	2	3.40	104	1,147	1,252	3,488	9.61	1.14	0.23	795	152
	1	3.90	110	2,898	3,007	4,739	21.97	1.00	0.20	948	301
	В	1.61	0	587	587	7,746	0.00	-	-	1,249	56

表5 地震荷重算定結果 (耐震設計用解析モデル)

表6 保有水平耐力算定結果 (耐震設計用解析モデル)

方向 (ケース)	階	Fe	Fs	Fes	Ds	基準保有耐力 Qd(kN)	必要 保有耐力 Qun(kN)	保有耐力 Qu(kN)	Qu/Qun	判定
	4	1.00	1.00	1.00	0.30	1,720	516	1,150	2.23	OK
. 37	3	1.00	1.00	1.00	0.40	2,992	1,197	1,999	1.67	OK
+X (+U2)	2	1.00	1.00	1.00	0.40	3,977	1,591	2,658	1.67	OK
(102)	1	1.00	1.00	1.00	0.35	4,739	1,659	3,167	1.91	OK
	В	-	-	-	-	-	-	4,172	-	-
	4	1.00	1.00	1.00	0.30	1,720	516	1,270	2.46	OK
-X	3	1.00	1.00	1.00	0.30	2,992	898	2,209	2.46	OK
	2	1.00	1.00	1.00	0.30	3,977	1,193	2,937	2.46	OK
(02)	1	1.00	1.00	1.00	0.40	4,739	1,896	3,500	1.85	OK
	В	-	-	-	-	-	-	4,610	-	-
	4	1.00	1.00	1.00	0.30	1,720	516	1,132	2.19	OK
V	3	1.00	1.00	1.00	0.30	2,992	898	1,969	2.19	OK
-Y (+U1)	2	1.00	1.00	1.00	0.30	3,977	1,193	2,617	2.19	OK
(101)	1	1.00	1.00	1.00	0.40	4,739	1,896	3,119	1.65	OK
	В	-	-	-	-	-	-	4,108	-	-
	4	1.00	1.00	1.00	0.30	1,720	516	1,130	2.19	OK
. 37	3	1.00	1.00	1.00	0.30	2,992	898	1,965	2.19	OK
+ Y	2	1.00	1.00	1.00	0.30	3,977	1,193	2,613	2.19	OK
(-U1)	1	1.00	1.00	1.00	0.40	4,739	1,896	3,113	1.64	OK
	В	-	-	-	-	-	-	4,101	-	-

-Y 方向加力時

100

図 4 Q-δ グラフ (耐震設計用解析モデル)

図 6 保有水平耐力時ヒンジ図 (-Y (+U1) 方向加力時、R=1/100 時点) (耐震設計用解析モデル)

b) 耐震安全検討モデルによる荷重増分解析

±0°、±90°加力時の荷重増分解析結果のうち、表7に地震荷重算定結果、表8に保有 水平耐力算定結果を示す。また図7にQ(層せん断力)-δ(層間変形)グラフ、図8、図 9に保有水平耐力時ヒンジ図(R=1/100時点)を各モデルについて示す。

方向 (ケース)	階	階 高 (m)	積載 荷重	固定荷 重	各階重 量 (kN)	合計重 量 (kN)	平均 重量 (kN/m ²)	Ai 分布	層せん 断力係 数 C	層せん 断力 Q(kN)	層水平力 H(kN)
	R	-	103	962	1,065	-	8.25	-	-	-	344
	4	3.40	104	1,107	1,211	1,065	9.30	1.62	0.32	344	254
V(EV)	3	3.90	104	1,107	1,211	2,276	9.30	1.31	0.26	598	197
$\Lambda(EI)$	2	3.40	104	1,147	1,252	3,488	9.61	1.14	0.23	795	152
	1	3.90	110	2,898	3,007	4,739	21.97	1.00	0.20	948	301
	В	1.61	0	587	587	7,746	0.00	-	-	1,249	56
	R	-	103	962	1,065	-	8.25	-	-	-	344
	4	3.40	104	1,107	1,211	1,065	9.30	1.62	0.32	344	254
V(EV)	3	3.90	104	1,107	1,211	2,276	9.30	1.31	0.26	598	197
$I(\mathbf{E}\mathbf{A})$	2	3.40	104	1,147	1,252	3,488	9.61	1.14	0.23	795	152
	1	3.90	110	2,898	3,007	4,739	21.97	1.00	0.20	948	301
	В	1.61	0	587	587	7,746	0.00	-	-	1,249	56

表7 地震荷重算定結果(耐震安全検討モデル)

表8 保有水平耐力算定結果 (耐震安全検討モデル)

方向 (ケース)	階	Fe	Fs	Fes	Ds	基準保有 耐力 Qd(kN)	必要保有 耐力 Qun(kN)	保有耐力 Qu(kN)	Qu/Qun	判定
	4	1.00	1.00	1.00	0.45	1,720	774	1,371	1.77	OK
\mathbf{V} / \mathbf{V}	3	1.00	1.00	1.00	0.45	2,992	1,346	2,384	1.77	OK
+X/+Y (+U2)	2	1.00	1.00	1.00	0.45	3,977	1,790	3,170	1.77	OK
(+02)	1	1.00	1.00	1.00	0.45	4,739	2,133	3,777	1.77	OK
	В	-	-	-	-	-	-	4,976	-	-
	4	1.00	1.00	1.00	0.45	1,720	774	1,317	1.70	OK
37/37	3	1.00	1.00	1.00	0.45	2,992	1,346	2,290	1.70	OK
-X/-Y	2	1.00	1.00	1.00	0.45	3,977	1,790	3,045	1.70	OK
(-02)	1	1.00	1.00	1.00	0.45	4,739	2,133	3,628	1.70	OK
	В	-	-	-	-	-	-	4,779	-	-
	4	1.00	1.00	1.00	0.45	1,720	774	1,201	1.55	OK
	3	1.00	1.00	1.00	0.45	2,992	1,346	2,089	1.55	OK
+X/-Y (+U1)	2	1.00	1.00	1.00	0.45	3,977	1,790	2,777	1.55	OK
(101)	1	1.00	1.00	1.00	0.45	4,739	2,133	3,309	1.55	OK
	В	-	-	-	-	-	-	4,359	-	-
	4	1.00	1.00	1.00	0.45	1,720	774	1,209	1.56	OK
\mathbf{X} / \mathbf{V}	3	1.00	1.00	1.00	0.45	2,992	1,346	2,103	1.56	OK
$-\Lambda/+Y$	2	1.00	1.00	1.00	0.45	3,977	1,790	2,796	1.56	OK
(-01)	1	1.00	1.00	1.00	0.45	4,739	2,133	3,332	1.56	OK
	В	-	-	-	-	-	-	4,389	-	-

-Y方向加力時(+U1)

図 7 Q-δ グラフ (耐震安全検討モデル)

(耐震安全検討モデル)

6) 固有值解析結果

耐震設計用モデルと耐震安全検討モデルでの固有値解析結果を示す。

a) 耐震設計用モデル

表9に耐震設計用モデルの固有値解析結果を示す。解析結果は全体系として3次まで求 めているが、各方向の1次固有周期を示している。

1							
	次数	固有周期(s)					
		X 方向	Y 方向	ねじれ			
	1次	0.255	0.263	0.207			

表9 固有値解析結果(耐震設計用モデル)

図 10 に各方向の 1 次のモード図を示す。Y 方向 1 次モードは Y 方向構面の見付け側から 見た図(a)を、X 方向 1 次モードは X 方向構面の見付け側から見た図(b)、ねじれ 1 次モー ドは Z 方向の上から見た図(c)を示す。

(a) Y方向1次、T=0.263(s)

(b) X方向1次、T=0.255(s)

図10 モード図(耐震設計用モデル)

b) 耐震安全検討モデル

表 10 に耐震安全検討モデルの固有値解析結果を示す。解析結果は全体系として 3 次ま で求めているが、各方向の 1 次固有周期を示している。

次数	固有周期(s)					
	X 方向	Y 方向	ねじれ			
1次	0.235	0.242	0.191			

表 10 固有値解析結果(耐震安全検討モデル)

図 11 に 1~3 次までのモード図を示す。Y 方向 1 次モードは Y 方向構面の見付け側から 見た図(a)を、X 方向 1 次モードは X 方向構面の見付け側から見た図(b)、ねじれ 1 次モー ドは Z 方向の上から見た図(c)を示す。

(a) Y方向1次、T=0.242(s)

(b) X方向1次、T=0.235(s)

(c) ねじれ1次、T=0.191(s)図11 モード図(耐震安全検討モデル)

c) 固有値解析のまとめ

耐震設計モデルと耐震安全検討モデルでは、スラブ筋量および各材料の剛性の差がある が、固有値解析結果の1次固有周期はほぼ同程であり、耐震安全検討モデルでの動的解析 が妥当なものと推定できる。

7) 地震応答解析

a) 耐震設計用モデル

耐震設計用モデルを用いて地震応答解析を行った。連続波は、南関東地震横浜、エルセントロ(レベル2)、JMA神戸、JR 鷹取を EW 方向、NS 方向、UD 方向をそれぞれ順に繋げ、 解析を行ったものである。最大応答値を方向ごとにとりまとめものを表 11~表 13 に示す。 図 12 に最大層間変形角、図 13 に最大加速度、図 14 に最大層せん断力、図 15 に加振後の ヒンジ図を示す。

耐震設計用モデルの最大応答層間変形角が JMA 神戸では Y 方向で 1/50、JR 鷹取波では Y 方向で 1/29、連続波では 1/14 とかなり大きな値となった。また、損傷状態は連続波での 最終状態において、柱梁に塑性ヒンジが多数形成され、残留変位も Y 方向で約 1/73 (3 階) と過大になっている。

安全側の検討ではあるが、単独において JR 鷹取波がかなりの変形量および応答量となっているので、耐震安全検討モデルでの解析からは JR 鷹取波を除外して行うこととする。

	ケース		2A-1	2A-2	2A-3	2A-4	2C-1
	モデル		耐震設計用 モデル	耐震設計 用モデル	耐震設計 用モデル	耐震設計 用モデル	耐震設計 用モデル
方向	地震波名		単独波 南関東地震 横浜	単独波 エルセン トロ(L2)	単独波 JMA 神 戸	単独波 JR 鷹取	連続波 2 (JMA 神 戸 ×100%)
	入力方向		1 方向 EW	1 方向 EW	1 方向 EW	1 方向 EW	3 方向 EW・NS・ UD
		R	2.88	3.54	15.44	16.93	72.61
		4	2.35	2.96	12.78	13.60	60.71
	发位 (cm)	3	1.50	1.93	8.49	8.82	41.74
	(011)	2	0.68	0.90	3.79	4.29	21.82
		1	0.00	0.00	0.00	0.00	0.00
		4	1.55	1.71	9.43	9.86	20.49
	層間変形角	3	2.35	2.71	12.27	12.25	44.96
	$(x10^{-3}rad)$	2	2.44	3.04	13.56	13.30	51.27
		1	1.71	2.28	9.51	10.94	43.08
		R	708	687	1,129	1,044	1,016
	加速度 (cm/s ²)	4	543	623	1,173	994	1,679
		3	485	502	1,082	744	912
	(cm/s)	2	527	377	1,252	793	1,317
		1	479	316	657	666	677
	速度	R	38	38	111	96	219
37		4	33	32	100	82	194
X		3	23	22	66	52	125
	(CIII/S)	2	12	12	32	27	63
		1	0	0	0	0	0
		4	0.75	0.74	1.20	1.11	1.02
	層せん断力	3	1.37	1.42	2.17	1.98	1.78
	$(x10^3 kN)$	2	1.66	1.96	2.93	2.58	2.32
		1	1.95	2.34	3.45	2.90	2.61
		4	0.71	0.69	1.12	1.04	0.95
	層せん断力係	3	0.60	0.62	0.95	0.87	0.78
	数	2	0.48	0.56	0.84	0.74	0.67
		1	0.41	0.49	0.73	0.61	0.55
		R	0.13	0.74	7.30	4.76	6.14
		4	0.09	0.74	5.88	3.64	5.90
	残留変位 (cm)	3	0.06	0.60	3.31	2.43	7.06
	(cm)	2	0.04	0.35	1.19	1.23	6.26
		1	0.00	0.00	0.00	0.00	0.00

表 11 最大応答値(X方向、耐震設計用モデル)

表 12 最大応答値(Y方向、耐震設計用モデル)

	ケース 2A-5 2A-6 モデル 耐震設計用 モデル 耐震設計 用モデル 耐震設計 用モデル 「 地震波名 単独波 南関東地震 横浜 単独波 エルセン トロ (L2) J 入力方向 1 方向 NS 1 方向 NS 1 方向 NS 変位 (cm) 1 万 5.77 2 0.85 2.53 1 0.00 0.00 4 1.99 11.02 3 2.50 11.21 2 2.69 9.71 1 2.16 6.29 加速度 (cm/s ²) R 746 加速度 (cm/s ²) 3 459 701 2 501 768 1 1 499 515 1 ア 速度 (cm/s ²) R 43 88 2 13 22 1 1 0 0 1 層世ん断力 (x10 ³ kN) 1 1.33 1.93 2 0.47 0.73 1 日の 0.59 <t< th=""><th>2A-7</th><th>2A-8</th><th>2C-1</th></t<>	2A-7	2A-8	2C-1			
	モデル		耐震設計用 モデル	耐震設計 用モデル	耐震設計 用モデル	耐震設計 用モデル	耐震設計 用モデル
方向	地震波名		単独波 南関東地震 横浜	単独波 エルセン トロ (L2)	単独波 JMA 神 戸	単独波 JR 鷹取	連続波 2 (JMA 神 戸 ×100%)
方向	入力方向		1 方向 NS	1 方向 NS	1 方向 NS	1 方向 NS	3 方向 EW・NS・ UD
		R	3.31	14.04	2A-62A-72A-8震設計 モデル耐震設計 用モデル耐震設計 用モデル単独波 ルセン ア単独波 JMA 神 戸単独波 JR 鷹取方向 NS1 方向 NS1 方向 NS14.0425.7044.7310.2720.6235.715.7713.2823.792.536.5012.320.000.000.0011.0215.6326.5211.2118.6730.529.7119.8433.676.2916.6431.501.0841,1951,2108201,2678247019418497681,2321,22451582972488149182721231404880882239450001.151.231.271.932.121.892.532.812.493.033.172.881.081.151.200.850.930.830.730.810.710.640.670.61-9.30-12.71-4.87-6.67-9.30-4.00		92.29
		4	2.72	10.27	20.62	35.71	69.94
	変位 (cm)	3	1.76	5.77	13.28	23.79	42.67
方向 万向 「 「 「 「 「 「 「 」 「 」 「 」 「 」 」 」 」 」 」 」 」 」 」 」 」 」	(em)	2	0.85	2.53	6.50	12.32	18.28
		1	0.00	0.00	0.00	0.00	0.00
		4	1.99	11.02	15.63	26.52	62.96
	層間変形角	3	2.50	11.21	18.67	30.52	70.70
方向 「 「 「 「 「 「 「 「 「 「 「 「 「	$(x10^{-3}rad)$	2	2.69	9.71	19.84	33.67	68.58
		1	2.16	6.29	16.64	31.50	41.74
		R	746	1,084	1,195	1,210	1,226
		4	545	820	1,267	824	1,066
	加速度 (cm/s^2)	3	459	701	941	849	956
	(em/s)	2	501	768	1,232	1,224	1,581
		1	499	515	829	724	1,055
		R	43	88	149	182	298
v		4	37	72	123	140	219
ľ	速度 (cm/s)	3	25	48	80	88	124
ボデル 耐震設計用 モデル 耐震設 用モデル 地震波名 単独波 南関東地震 横浜 単独波 二ルセ トロ (0) 入力方向 1 方向 NS 1 方向 NS 水方方向 1 方向 NS 1 方向 NS 変位 (cm) 1 万向 NS 1 万向 NS 度間変形角 (x10 ⁻³ rad) 2 0.85 2.53 1 0.00 0.00 4 1.99 11.02 2 0.85 2.53 1 0.00 0.00 4 1.99 11.02 2 2.69 9.71 1 2.166 6.29 加速度 (cm/s ²) R 746 加速度 (cm/s ²) R 746 1 499 515 R 43 88 4 377 72 3 25 48 2 13 22 1 0 0 資 1.33 1.93 1 1.90 3.03 2 1.62	(011/3)	2	13	22	39	45	60
	0	0	0	0	0		
	1.15	1.23	1.27	1.19			
	層せん断力	3	1.33	1.93	2.12	1.89	1.94
	(x10 ³ kN)	2	1.62	2.53	2.81	2.49	2.33
		1	1.90	3.03	3.17	2.88	2.83
		4	0.76	1.08	1.15	1.20	1.12
	層せん断力係	3	0.59	0.85	0.93	0.83	0.85
	数	2	0.47	0.73	0.81	0.71	0.67
		1	0.40	0.64	0.67	0.61	0.60
		R	0.02	-9.30	-12.71	-4.87	13.25
		4	0.07	-6.67	-9.30	-4.00	8.94
	残留変位 (cm)	3	0.07	-3.67	-5.36	-2.61	3.60
	(0111)	2	0.05	-1.61	-1.77	-1.35	0.21
		1	0.00	0.00	0.00	0.00	0.00

	ケース		2B-1	2B-1	2C-1
	モデル		耐震設計用 モデル	耐震設計 用モデル	耐震設計 用モデル
方向	地震波名		単独波 JMA 神戸	単独波 JR 鷹取	連続波 2 (JMA 神 戸 ×100%)
	入力方向		1 方向 UD	1 方向 UD	3 方向 EW・NS・ UD
		R	349	364	507
		4	347	357	3,985
Ζ	加速度 (cm/s^2)	3	342	342	606
	(0	2	335	322	1,427
		1	332	306	2,021

表 13 最大応答値(Z方向、耐震設計用モデル)

図 12 最大層間変形角 (×10⁻³rad、耐震設計用モデル)

図 13 最大加速度 (cm/s²、耐震設計用モデル)

図 15 塑性ヒンジ図(連続波、耐震設計用モデル)

b) 耐震安全検討モデル

耐震安全検討モデルによる地震応答解析を行った。実験時の入力地震動のレベル等の決 定にもちいるため、地震波は横浜波、エルセントロ波(レベル2)、JMA 神戸波(100%)を 順に繋げたものを用いた。

最大応答値を方向ごとにとりまとめものを表 14~表 16 に示す。図 16 に最大層間変形角、 図 17 に最大加速度、図 18 に最大層せん断力、図 19 に加振後のヒンジ図を示す。を示す。

横浜波終了時では、最大応答層間変形角が Y 方向で 1/413 で、エルセントロ波(レベル 2)終了時では、Y 方向で 1/150 となり、1/100 以下である。一方 JMA 神戸波(100%)終了時 では、1/65 となり、1/100 を大きく超える値となった。

今回の実験では試験体の倒壊をさける必要があるため、最大層間変形角を 1/100 程度に とどめる。よって 3 波目の JMA 神戸波の入力レベルの検討のための解析を以降で行う。

表 14 最大応答値(X方向、耐震安全検討モデル)

	ケース		2SC-2	2SC-2	2SC-2
	モデル		耐震安全検 討モデル	耐震安全 検討モデ ル	耐震安全検 討モデル
方向	地震波名		単独波 2 (~南関東 地震横浜)	単独波 2 (~エルセ ントロ (L2))	単独波 2 (~JMA 神 戸×100%)
	入力方向		2 方向 EW・NS	2 方向 EW・NS	3 方向 EW·NS·UD
		R	2.43	3.25	8.67
		4	2.02	2.84	7.76
	変位	3	1.28	1.96	4.95
	(cm)	2	0.58	1.03	2.31
		1	0.00	0.00	0.00
		4	1.21	1.33	2.67
	層間変形角	3	1.88	2.40	5.66
	(x10 ⁻³ rad)	2	1.99	2.52	6.10
		1	1.45	2.61	5.44
		R	745	751	1,119
		4	554	627	983
	加速度 (cm/s^2)	3	421	534	905
	(em/s)	2	416	507	758
		1	479	479	630
		R	33	33	90
v		4	29	29	77
Λ	速度 (cm/s)	3	20	20	52
	(0111, 0)	2	10	10	27
		1	0	0	0
		4	0.79	0.80	1.16
	層せん断力	3	1.39	1.53	2.25
	$(x10^3 kN)$	2	1.71	2.09	3.12
		1	1.86	2.56	3.97
		4	0.75	0.75	1.09
	層せん断力係	3	0.61	0.67	0.99
	数	2	0.49	0.60	0.90
		1	0.39	0.54	0.84
		R	0.22	-0.07	1.86
	建网亦应	4	0.19	-0.10	1.88
	7天亩変位 (cm)	3	0.13	-0.06	1.49
		2	0.06	-0.03	0.97
		1	0.00	0.00	0.00

表 15 最大応答値(Y方向、耐震安全検討モデル)

	ケース		2SC-2	2SC-2	2SC-2
	モデル		耐震安全検 討モデル	耐震安全 検討モデ ル	耐震安全検 討モデル
方向	地震波名		単独波 2 (~南関東 地震横浜)	単独波 2 (~エルセ ントロ (L2))	単独波 2 (~JMA 神 戸×100%)
	入力方向		2 方向 EW・NS	2 方向 EW・NS	3 方向 EW・NS・ UD
		R	2.91	7.39	18.62
		4	2.43	6.55	16.52
	发位 (cm)	3	1.50	4.61	11.39
	(em)	2	0.71	2.61	5.95
		1	0.00	0.00	0.00
		4	1.40	2.79	6.67
	層間変形角	3	2.41	5.15	13.10
	$(x10^{-3}rad)$	2	2.42	5.99	15.24
		1	1.77	6.64	14.89
		R	682	1,215	1,729
		4	543	965	1,390
	加速度 (cm/s^2)	3	438	851	1,156
	(em/s)	2	448	823	1,209
		1	499	527	872
		R	37	81	138
V		4	33	69	126
Ĭ	速度 (cm/s)	3	23	45	91
	(em/s)	2	12	25	54
		1	0	0	0
		4	0.72	1.29	1.85
	層せん断力	3	1.35	2.06	3.16
	$(x10^3 kN)$	2	1.64	2.78	3.90
		1	1.83	3.51	4.53
		4	0.68	1.21	1.74
	層せん断力係	3	0.59	0.91	1.39
	数	2	0.47	0.80	1.12
		1	0.39	0.74	0.96
		R	0.01	-0.64	2.36
		4	0.01	-0.62	2.49
	残留変位 (cm)	3	0.00	-0.64	2.31
	(0111)	2	0.00	-0.47	1.47
		1	0.00	0.00	0.00

表 16 最大応答値(Z方向、耐震安全検討モデル)

	ケース		2SC-2	2SC-2	2SC-2
	モデル	モデル 耐震安全検 討モデル		耐震安全 検討モデ ル	耐震安全検 討モデル
方向	地震波名		単独波 2 (~南関東 地震横浜)	単独波 2 (〜エルセ ントロ (L2))	単独波 2 (~JMA 神 戸×100%)
	入力方向		2 方向 EW・NS	2 方向 EW・NS	3 方向 EW・NS・ UD
		R	147	147	442
		4	141	141	432
Ζ	加速度 (cm/s ²)	3	117	145	632
	(0	2	115	132	468
		1	94	244	1,348

図 16 最大層間変形角 (×10⁻³rad、耐震安全検討モデル)

図 17 最大加速度 (cm/s²、耐震安全検討モデル)

図19 塑性ヒンジ図(連続波、耐震安全検討モデル)

c) 耐震安全検討モデルによる入力レベルの検討

実験時における入力レベルの決定するための地震応答解析を行った。地震波は横浜波、 エルセントロ波(レベル2)、JMA神戸波を順に繋げたものを用い、3波目である JMA神戸 波を表 17 に示すとおり入力レベルを 60%にしたものをケース⑤、80%にしたものをケース ⑥、100%にしたものをケース⑦とした。

最大応答値を方向ごとにとりまとめものを表 18~表 20 に示す。図 20 に最大層間変形角、 図 21 に最大加速度、図 22 に最大層せん断力を示す。

60%、80%、100%終了時で、それぞれ最大応答層間変形角が 1/145、1/99、1/65 となった。 また、80%での応答加速度は、4 階部で 1.181cm/s²となり、実験の目的を達成する十分な 応答値となっている。なお、80%での加振後のヒンジ図を図 23 に示す。

以上より実験の安全性を考慮し、最大層間変形角を 1/100 程度にとどめ、実験の目的を 達成するためには JMA 神戸波の入力レベルを 80%にすることが、最もよいと考えられる。

ケース	解析モデル	地震波	JMA 神戸波 のレベル
5	耐震安全 検討モデル		60 %
6		連続波	80 %
$\overline{\mathcal{O}}$			100 %

表17 検討ケース概要

表 18 最大応答値(X方向、ケース⑤~⑦)

,	k 7	ケース			
	クース		(5)	回言安全	(1) 耐雪安全
	モデル		耐震安全検	in 展女主 検討モデ	in 展女主 検討モデ
			討モテル	IV IV	N
方向	业合计方		連続波 2	連続波2	連続波 2
2213	地震波名		(JMA 神戸	(JMA 神 戸	(JMA 神 戸
			imes 60%)	×80%)	×100%)
	1 L +		3 方向	3 方向	3 方向
	人刀万问		EW·NS· UD	EW·NS· UD	EW·NS· UD
		R	5.51	6.40	8.67
	- /L	4	4.74	5.60	7.76
	发位 (cm)	3	3.13	3.68	4.95
	(0111)	2	1.59	1.80	2.31
		1	0.00	0.00	0.00
		4	2.23	2.20	2.67
	層間変形角	3	4.01	4.34	5.66
	$(x10^{-3}rad)$	2	3.94	4.74	6.10
		1	3.50	4.03	5.44
		R	1,023	1,045	1,119
		4	853	975	983
	加速度 (am/s ²)	3	631	792	905
	(cm/s)	2	624	705	758
		1	479	497	630
		R	74	83	90
		4	64	71	77
Х	速度 (am/a)	3	39	43	52
	(cm/s)	2	19	23	27
		1	0	0	0
		4	1.02	1.11	1.16
	届せん断力	3	1.99	2.15	2.25
	$(x10^3 kN)$	2	2.65	2.73	3.12
		1	2.93	3.36	3.97
		4	0.96	1.04	1.09
	層せん断力係	3	0.88	0.95	0.99
	数	2	0.76	0.78	0.90
		1	0.62	0.71	0.84
		R	0.08	0.45	1.86
		4	-0.02	0.45	1.88
	残留変位	3	0.06	0.41	1.49
	(cm)	2	0.08	0.36	0.97
		1	0.00	0.00	0.00

表 19 最大応答値(Y方向、ケース⑤~⑦)

-	ケース		5	6	\overline{O}
			耐震安全検	耐震安全	耐震安全
	モアル		討モデル	検討モア ル	検討セア ル
Leite			油 //// (1)	連続波2	連続波2
万回	地震波名		運航波 2 (JMA神戸	(JMA 神	(JMA 神
			×60%)	尸 × 80 %)	尸 ×100%)
			3 方向	3 方向	3 方向
	入力方向		EW·NS·	EW·NS·	EW·NS·
		-	UD	UD	UD
		R	8.67	12.09	18.62
	亦位	4	7.46	10.64	16.52
	(cm)	3	4.81	7.07	11.39
		2	2.66	3.62	5.95
		1	0.00	0.00	0.00
		4	3.45	4.64	6.67
	層間変形角	3	6.54	9.12	13.10
	$(x10^{-3}rad)$	2	6.86	10.10	15.24
_		1	6.74	9.17	14.89
		R	1,189	1,419	1,729
		4	952	1,181	1,390
	加速度 (cm/s^2)	3	833	891	1,156
	(em/s)	2	764	839	1,209
		1	522	681	872
		R	82	112	138
V		4	72	98	126
ĭ	速度 (cm/s)	3	51	68	91
	(0111/0)	2	28	36	54
		1	0	0	0
		4	1.26	1.49	1.85
	層せん断力	3	2.22	2.65	3.16
	$(x10^3 kN)$	2	2.97	3.49	3.90
		1	3.54	4.05	4.53
		4	1.18	1.39	1.74
	層せん断力係	3	0.97	1.16	1.39
	数	2	0.85	1.00	1.12
		1	0.75	0.86	0.96
		R	0.08	0.65	2.36
		4	0.13	0.66	2.49
	残留変位 (cm)	3	-0.03	0.35	2.31
	(cm)	2	-0.11	0.20	1.47
		1	0.00	0.00	0.00

表 20 最大応答値(Z方向、ケース⑤~⑦)

	ケース		(5)	6	\overline{O}
	モデル		耐震安全検 討モデル	耐震安全 検討モデ ル	耐震安全 検討モデ ル
方向	地震波名		連続波 2 (JMA神戸 ×60%)	連続波 2 (JMA 神 戸 ×80%)	連続波 2 (JMA 神 戸 ×100%)
	入力方向		3 方向 EW・NS・ UD	3 方向 EW・NS・ UD	3 方向 EW・NS・ UD
		R	259	330	442
		4	423	325	432
Ζ	加速度 (cm/s ²)	3	424	516	632
	(0111/5)	2	310	362	468
		1	500	1,084	1,348

図 20 最大層間変形角 (×10⁻³rad、耐震設計用モデル)

図 21 最大加速度 (cm/s²、耐震設計用モデル)

図 23 塑性ヒンジ図(連続波(JMA 神戸 80%)ケース⑥、耐震安全検討モデル)

d) 実験結果との比較

数値解析と実験結果との比較をおこなう。まず、それぞれの地震波加振後の試験体の固 有値についての実験結果と解析結果についてそれぞれ表 21、表 22 に示す。表には同時に 固有値の伸び率についても示す。

また、横浜波加振、エルセントロ波加振、JMA 神戸波加振に対する Y 方向 1 階、3 階の せん断力-層間変形関係(Q-δ)の解析と実験の比較を図 24 に示す。

表 21 実験による試験体固有値結果

			固有	周期		固有周期伸び率				
	mode	1	2	3	4	1	2	3	4	平均
44	initial	0.238	0.063	0.032	0.024	0%	0%	0%	0%	0%
E.	after 横浜	0.286	0.073	0.039	0.026	20%	16%	20%	12%	17%
懃	after エルセントロ	0.315	0.078	0.041	0.028	32%	23%	27%	19%	25%
Ŧ	after JMA80%	0.369	0.101	0.046	0.031	55%	60%	44%	31%	48%

②解析結果:(初期剛性+最大応答割線剛性)/2による固有周期の変化

		固有周期					固有周期値75率			
表	表 22 解析による試験体固有値結果									
HX	nnuar	0.200	0.030	0.007	0.001	0.70	0.70	U 70	0.70	U 70
	after 横浜	0.318	0.120	0.082	0.064	25%	23%	22%	25%	24%
菿	after エルセントロ	0.333	0.125	0.085	0.067	31%	28%	26%	32%	29%
-	after JMA80%	0.348	0.131	0.089	0.070	37%	34%	32%	37%	35%

③実験結果:(初期剛性+最大応答割線剛性)/2による固有周期の変化

		固有	周期		固有周期伸び率					
mode	1	2	3	4	1	2	3	4	平均	
⊾ linitial(三の丸)	0.175	0.064	0.042	0.033	0%	0%	0%	0%	0%	l
最大応答	値から	5求め7	た割線	剛性と	初期岡	性の	平均剛	性によ	り算気	Ż

解析結果(1階)

実験結果(1階)

図 24 解析と実験のせん断力-変形関係(Q-δ)の比較

解析と実験では、せん断力-変形関係から各加振時の最大応答割線剛性は異なるものの、 1次固有周期および各固有周期の伸び率は良好な対応を示している。またほぼ弾性域内で ある初期剛性もほぼ同程度であるが、塑性域に入る第一折れ点などの降伏点が実大の試験 体の方が高いことが確認された。次に、解析と実験での応答加速度の時刻歴波形(入力加 速度、1,3,4階の応答加速度)を図25~図27に示す。まず、入力加速度が実験では 大きめに入力されているなどの問題があり、実験結果と解析結果が必ずしも良好に一致し ているとはいえないと思われる。今後実験での入力加速度を用いた解析などをし、詳細な 検討するが必要であると考えられる。

X 軸

解析結果

実験結果

Y 軸 横浜波時刻歴結果 図 25

解析結果

実験結果

Y 軸 図 26 エルセントロ波時刻歴結果

解析結果

実験結果

Y 軸 JMA 神戸波時刻歴結果 図 27

8) 免震構造での解析

ここでは、免震構造の解析について述べる。

a)解析モデル

i)上部構造

免震構造の解析においては、上部構造への地震動による影響が一般的に小さいためここでは、質点系モデルとして解析を行う。また免震装置については後で述べる。解析モデルの条件を以下に示す。またモデル図を図 28 に示す。

上部建物モデル:5質点系モデル串団子モデル 剛性:クワッドリニア 最大値指向型 減衰:初期剛性比例型(減衰定数:2%) 免震上部建物モデル:各装置による 応答解析法:Runge Kutta 法(解析サンプリング、0.001s)

図 28 免震解析モデル図

上部建物の各種パラメータは、上部構造の設計用モデルを用いた。また、剛性について は荷重増分解析の骨格曲線の値を用いた。用いた数値を表 23 に示す。

表 23 上部構造の各種パラメータ

方向	階	階 区分	質量	階高	強度			変位			初期		剛比			
			(t)	(cm)	1 (FNI)	2 (FNI)	3 (FND	4 (FN)	1 (cm)	2 (cm)	3 (cm)	4 (cm)	(kN/cm)	2	3	4
	Δ		97	340	1.48	836	1017	1130	0.05	0.54	0.81	1.61	2960	0.474	0.226	0.048
U1	3	一般	116	390	124	1357	1693	1993	0.04	0.8	1.21	2.41	3100	0.523	0.264	0.081
	2	一般	116	340	165	1813	2252	2669	0.03	0.78	1.17	2.35	5500	0.4	0.205	0.064
	1	一般	122	390	752	2688	3118	3270	0.11	0.95	1.43	2.85	6836	0.337	0.131	0.016
	В	地下	278	200	116	238	360	734	0	0.01	0.01	0.02				
	BAS	基礎	19	0												
U2	4	一般	97	340	332	1008	1134	1251	0.11	0.71	1.06	1.83	3018	0.373	0.119	0.05
	3	一般	116	390	436	1423	1729	2000	0.12	0.85	1.28	2.56	3633	0.372	0.196	0.058
	2	一般	116	340	624	1901	2298	2649	0.11	0.81	1.22	2.43	5673	0.322	0.171	0.051
	1	一般	122	390	899	2214	2649	3127	0.12	0.64	0.97	1.93	7492	0.338	0.176	0.066
	В	地下	278	200	2827	4272	4272	4272	0.08	0.23	0.23	0.23	35338	0.273		
	BAS	基礎	19	0												

なお、骨格曲線での分岐点はそれぞれ以下の通りである。

第1分岐剛性 : 初期剛性
第1分岐点(ひび割れ) : 剛性低下率が初期剛性の80%となる割線剛性線とQ-δ
曲線の交点の耐力の初期剛性上の点
第2分岐点(降伏):第3点までがエネルギー等価となる第3点前接線剛性上の点
第3分岐点 : 層間変形角が1/100となるQ-δ曲線上の点又は補間点

ii)免震装置:天然ゴム積層ゴム+鋼製(U型)ダンパー(免震1)

免震装置は、天然ゴム積層ゴムと鋼製(U型)ダンパーを組み合わせたものである。天 然ゴム積層ゴムの単体での履歴特性を図 29 に示す。

図 29 天然ゴム積層ゴム単体での履歴特性

これより、天然ゴム積層ゴムは、弾性モデルとして扱うことする。一方、鋼製ダンパー は単体で実験を行うとダンパーが降伏するためメーカーでの実績よりカタログ値を採用す る。なお、同様のタイプのダンパーに関するメーカー公表の特性結果を図 30 に示す。

図 30 ダンパの履歴特性

なおメーカーでは、本ダンパーをバイリニアモデルとして扱うことを推奨している。 以上より、天然ゴム積層ゴムを弾性モデルとし、鋼製(U型)ダンパーをバイリニアモ デルとした。よって免震1での免震装置の解析モデルもバイリニアモデルとする。表 24 にモデルのパラメータを示す。

項目	数值					
1 次剛性	$16.0 imes10^6$ N/m					
2次鋼製	$3.72\! imes\!10^6\mathrm{N/m}$					
降伏点変位	27.8mm					

表 24 免震1の解析モデルの各種パラメータ

以上の条件で解析を行った結果(入力加速度、1、3,4階応答加速度、免震層変位) を図 31~図 33 に示す。ここでは実験結果との比較のため、時刻歴波形もあわせて示す。

やはり入力加速度が実験と解析では差があるという問題が耐震構造と同様にみられる。 それによる応答加速度および免震層変位とも多少の差があるが、概ね同程度の最大値が得 られ、また時刻歴波形もほぼ同程度であることがわかる。

解析結果

実験結果

Y 軸 図 31 エルセントロ波時刻歴結果

解析結果

実験結果

Y 軸 図 32 JMA 神戸波時刻歴結果

解析結果

実験結果

Y 軸 図 33 三の丸波時刻歴結果

iii) 免震装置:高減衰積層ゴム(免震2)

免震装置は、高減衰積層ゴムによるものである。高減衰積層ゴムの単体での履歴特性を 図 34 に示す。

図 34 高減衰積層ゴムの履歴特性(単体)

本履歴モデルより、高減衰積層ゴムの履歴モデルをバイリニアモデルとする。本積層ゴムを4台用いた場合の免震装置としての履歴モデルを図35に示す。

また、バイリニアモデルとして、それぞれの剛性を表 25 に示す値を用いて数値モデル を構築し数値解析を行った。

図 35 高減衰積層ゴムを用いた免震システムの履歴モデル

項目	数值					
1 次剛性	$18.5 imes 10^6$ N/m					
2次鋼製	$4.33 imes10^6$ N/m					
降伏点変位	19.8mm					

表 25 免震2の解析モデルの各種パラメータ

以上の条件で解析を行った結果を図 36~図 38 に示す。ここでは実験結果との比較のため、時刻歴波形もあわせて示す。

応答加速度および免震層変位とも多少の差があるが、免震1同様概ね同程度の最大値が 得られ、また時刻歴波形もほぼ同程度であることがわかる。

解析結果

実験結果

X 軸 図 36 エルセントロ波時刻歴結果

解析結果

実験結果

Y 軸 図 37 JMA 神戸波時刻歴結果

実験結果

Y 軸 図 38 三の丸波時刻歴結果

9) キャスター機器の数値解析

ここでは、キャスター機器の数値解析について述べる。

a) 解析対象

解析対象としたキャスタワゴンは、震動実験で試験体4 階に設置した図 36 に示すキャスタワゴンである。実験では、 キャスター上板に設置した加速度計による加速度計測を行 った。

b) 解析結果

3.1.4において作成した数値解析モデルを用い、実験で 図 36 キャスターワゴン外観

使用したキャスターワゴンのシミュレーションによる挙動推定を行った。シミュレーションに使用したパラメータを表 26 に示す。

Mass [kg]	6.9
Inertia moment [kg·m²]	0.10
Trail [m]	0.012
μ_{0}	0.12
μ	0.10
λ ο	0.1
λ	0.1

表 26 解析パラメータ

免震構造の場合のエルセントロ波加振とJMA神戸波加振の実験における、ワゴンの応答 加速度を図 37,38 に赤の点線で、応答加速度のシミュレーション結果を同図に青の実線で 示す。振動実験に関して、エルセントロ波加振によるワゴンのXY応答加速度は最大で 2.1 m/s²、JMA神戸波加振の場合は 1.8 m/s²であった。

この図より、シミュレーションによって実験におけるワゴンの応答加速度をよく再現で きている。このモデルによるシミュレーションは単軸加振のみでなく2軸加振の際も有効 であること、また、モデルは水平面内運動のみ扱うモデルではあるが、JMA 神戸波3軸加 振の場合も挙動を再現できた。

図 37 エルセントロ波加振の解析結果と実験結果との比較

図 38 JMA 神戸波加振の解析結果と実験結果との比較

(c) 結論ならびに今後の課題

重要施設の実規模実験のための建物モデルの事前地震応答解析を実施し、建物の応答性 状把握、実験の安全性の検討、地震動の選択および入力レベルの選定を行った。

応答解析では、建物(試験体)の設計に用いたれる条件をもちいた「耐震設計用モデル」 での応答解析と、建物の実状の条件によりあわせた「耐震安全検討モデル」での応答解析 を行い、それぞれの結果から、各種実験条件の選定を行った。

「耐震設計用モデル」は安全側の条件を用いているため、実験時において試験体の損傷 がかなり進行するとの結果となった。そのため、実験の目的を達成するための十分な入力 レベルによる地震動での加振が行えないことが予想された。そこで試験体の実状のあわせ た「耐震安全検討モデル」により、地震波を横浜波、エルセントロ波(レベル2)、JMA 神 戸波を順に繋げた連続波を用いて応答解析を実施した。その結果、3波目である JMA 神戸 波入力レベルを 80%とした場合が、実験の目的を達成しかつ、建物(試験体)の損傷が過 大に進行せず安全な条件で実験が実施できるとの予測を得た。

地震応答解析と実験結果の比較を行った。耐震構造においては、弾性および初期塑性領 域において実験結果とほぼ一致しており、モデルの妥当性が確認された。また、地震波の 応答に関しては、入力レベルの差や実際の試験体の強度などに差があり、差がみられる結 果となったが、各フロアの応答加速度の最大値レベルについて、当初の想定より多少大き くなったが実験の目的を十分達成できており、また試験体の損傷も大きく進行せず問題な かった。

一方、免震構造においては、短周期および長周期地震動とも各フロアの応答加速度およ び免震層の相対変位とも実験結果とほぼ一致していることが確認された。

さらに、建物モデル内に設置されたキャスター機器のモデル構築と数値解析を行った。 内部機器(主にキャスター機器)における応答解析と実験結果がほぼ一致しておりモデル 構築の妥当性が確認された。

今後の課題としては、実験結果を用いた事後数値解析を行い、解析での問題点、精度お とび実験時の問題点等について検証する必要性が感じられる。

- (d) 引用文献
- 1) 石川,木村,山本,角:RC造骨組み架構の履歴特性モデル,コンクリート工学年次論文 集 Vol.27, 2005.6

(e) 学会等発表実績

学会等における口頭・ポスター発表

発表成果(発表題目、口	発表者氏名	発表場所	発表時期	国際・国
頭・ポスター発表の別)		(学会等名)		内の別
耐震構造での解析と実	池田周英、島	日本建築学会大会	2009.8	国内
験結果の比較	野幸弘、鹿島	(東北)学術講演会		
- 震災時における建物	孝、石川裕			
の機能保持に関する研	次、佐藤栄			

究開発(その13) -	児、長江拓 也、古川幸、 福山國夫			
解析結果と実験結果に 対する考察 - 震災時における建物 の機能保持に関する研 究開発(その14) -	島野幸弘、池 田周英、鹿島 孝、石川裕 次、佐藤栄 児、長江拓 也、古川幸、 福山國夫	日本建築学会大会 (東北)学術講演会	2009.8	国内

- (f) 特許出願, ソフトウエア開発, 仕様・標準等の策定
- 1) 特許出願

なし

2) ソフトウエア開発

なし

3) 仕様・標準等の策定

なし

(3) 平成21年度業務計画案

課題終了のため計画なし。