Derivation of Tables 3 through 5 in Okada (1992)

[I] Derivation of Table 3 (x-Derivative)

Table 3 can be derived by differentiation of Table 2 with x-coordinate (refer Appendix : Table of Differentiation). In the following, the notation is matched with Tables in Okada (1992).

Displacement : $u^{0}(x, y, z)=\frac{M_{0}}{2 \pi \mu}\left[u^{0}{ }_{A}(x, y, z)-u^{0}{ }_{A}(x, y,-z)+u^{0}{ }_{B}(x, y, z)+z u^{0}{ }_{C}(x, y, z)\right]$
x-Derivative : $\frac{\partial u^{0}}{\partial x}(x, y, z)=\frac{M_{0}}{2 \pi \mu}\left[\frac{\partial u^{0}{ }_{A}}{\partial x}(x, y, z)-\frac{\partial u^{0} A}{\partial x}(x, y,-z)+\frac{\partial u^{0}{ }_{B}}{\partial x}(x, y, z)+z \frac{\partial u^{0} C}{\partial x}(x, y, z)\right]$
(1) Strike slip
$u_{A}^{o}=\left(\begin{array}{cr}\frac{1-\alpha}{2} \frac{q}{R^{3}} & +\frac{\alpha}{2} \frac{3 x^{2} q}{R^{5}} \\ \frac{1-\alpha}{2} \frac{x}{R^{3}} \sin \delta+\frac{\alpha}{2} \frac{3 x y q}{R^{5}} \\ -\frac{1-\alpha}{2} \frac{x}{R^{3}} \cos \delta+\frac{\alpha}{2} \frac{3 x d q}{R^{5}}\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{c}-\frac{3 x^{2} q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{1}^{0} \sin \delta \\ -\frac{3 x y q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{2}^{0} \sin \delta \\ -\frac{3 c x q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{4}^{0} \sin \delta\end{array}\right) \quad u_{C}^{o}=\left(\begin{array}{c}-(1-\alpha) \frac{A_{3}}{R^{3}} \cos \delta+\alpha \frac{3 c q}{R^{5}} A_{5} \\ (1-\alpha) \frac{3 x y}{R^{5}} \cos \delta+\alpha \frac{3 c x}{R^{5}}\left(\sin \delta-\frac{5 y q}{R^{2}}\right) \\ -(1-\alpha) \frac{3 x y}{R^{5}} \sin \delta+\alpha \frac{3 c x}{R^{5}}\left(\cos \delta+\frac{5 d q}{R^{2}}\right)\end{array}\right)$
where, $\quad d=c-z, q=y \sin \delta-d \cos \delta, R^{2}=x^{2}+y^{2}+d^{2} \quad$ and

$$
I_{1}^{0}=y\left[\frac{1}{R(R+d)^{2}}-x^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \quad I_{2}^{0}=x\left[\frac{1}{R(R+d)^{2}}-y^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \quad I_{4}^{0}=-x y \frac{2 R+d}{R^{3}(R+d)^{2}}
$$

$$
\frac{\partial u_{A}^{o}}{\partial x}=\left(\begin{array}{cc}
-\frac{1-\alpha}{2} \frac{3 x q}{R^{5}} & +\frac{\alpha}{2} \frac{3 x q}{R^{5}}\left(1+A_{5}\right) \\
\frac{1-\alpha}{2} \frac{A_{3}}{R^{3}} \sin \delta+\frac{\alpha}{2} \frac{3 y q}{R^{5}} A_{5} \\
-\frac{1-\alpha}{2} \frac{A_{3}}{R^{3}} \cos \delta+\frac{\alpha}{2} \frac{3 d q}{R^{5}} A_{5}
\end{array}\right) \quad \frac{\partial u_{B}^{o}}{\partial x}=\left(\begin{array}{lc}
-\frac{3 x q}{R^{5}}\left(1+A_{5}\right)-\frac{1-\alpha}{\alpha} J_{1}^{0} \sin \delta \\
-\frac{3 y q}{R^{5}} A_{5} & -\frac{1-\alpha}{\alpha} J_{2}^{0} \sin \delta \\
-\frac{3 c q}{R^{5}} A_{5} & -\frac{1-\alpha}{\alpha} K_{1}^{0} \sin \delta
\end{array}\right) \quad \begin{aligned}
& A_{3}=1-\frac{3 x^{2}}{R^{2}} \\
& A_{5}=1-\frac{5 x^{2}}{R^{2}} \\
& A_{7}=1-\frac{7 x^{2}}{R^{2}}
\end{aligned}
$$

$$
\frac{\partial u_{C}^{o}}{\partial x}=\left(\begin{array}{c}
(1-\alpha) \frac{3 x}{R^{5}}\left(2+A_{5}\right) \cos \delta-\alpha \frac{15 c x q}{R^{7}}\left(2+A_{7}\right) \\
(1-\alpha) \frac{3 y}{R^{5}} A_{5} \cos \delta+\alpha \frac{3 c}{R^{5}}\left(A_{5} \sin \delta-\frac{5 y q}{R^{2}} A_{7}\right) \\
-(1-\alpha) \frac{3 y}{R^{5}} A_{5} \sin \delta+\alpha \frac{3 c}{R^{5}}\left(A_{5} \cos \delta+\frac{5 d q}{R^{2}} A_{7}\right)
\end{array}\right) \quad J_{1}^{0} \equiv \frac{\partial}{\partial x} I_{1}^{0}=-3 x y\left[\frac{3 R+d}{R^{3}(R+d)^{3}}-x^{2} \frac{5 R^{2}+4 R d+d^{2}}{R^{5}(R+d)^{4}}\right]
$$

The above three vectors correspond to the contents of the row of Strike-Slip in Table 3.
(2) Dip slip

$$
u_{A}^{o}=\left(\begin{array}{r}
\frac{\alpha}{2} \frac{3 x p q}{R^{5}} \\
\frac{1-\alpha}{2} \frac{s}{R^{3}}+\frac{\alpha}{2} \frac{3 y p q}{R^{5}} \\
-\frac{1-\alpha}{2} \frac{t}{R^{3}}+\frac{\alpha}{2} \frac{3 d p q}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{c}
-\frac{3 x p q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{3}^{0} \sin \delta \cos \delta \\
-\frac{3 y p q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{1}^{0} \sin \delta \cos \delta \\
-\frac{3 c p q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{5}^{0} \sin \delta \cos \delta
\end{array}\right) \quad u_{C}^{o}=\left(\begin{array}{r}
(1-\alpha) \frac{3 x t}{R^{5}} \\
(1-\alpha)\left(\frac{3 y t}{R^{5}}-\frac{\cos 2 \delta}{R^{3}}\right)-\alpha \frac{15 c x p q}{R^{7}} \\
-(1-\alpha) \frac{A_{3}}{R^{3}} \sin \delta \cos \delta \\
+\alpha \frac{15 c d p q}{R^{7}}+\alpha \frac{3 c s}{R^{5}} \\
-\alpha \frac{3 c t}{R^{5}}
\end{array}\right)
$$

where, $d=c-z,\left\{\begin{array}{l}p=y \cos \delta+d \sin \delta \\ q=y \sin \delta-d \cos \delta\end{array}, \quad\left\{\begin{array}{l}s=p \sin \delta+q \cos \delta=y \sin 2 \delta-d \cos 2 \delta \\ t=p \cos \delta-q \sin \delta=y \cos 2 \delta+d \sin 2 \delta\end{array} \quad\right.\right.$ and

$$
\begin{gathered}
I_{1}^{0}=y\left[\frac{1}{R(R+d)^{2}}-x^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \quad I_{2}^{0}=x\left[\frac{1}{R(R+d)^{2}}-y^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \quad I_{3}^{0}=\frac{x}{R^{3}}-I_{2}^{0} \quad I_{5}^{0}=\frac{1}{R(R+d)}-x^{2} \frac{2 R+d}{R^{3}(R+d)^{2}} \\
\frac{\partial u_{A}^{o}}{\partial x}=\left(\begin{array}{c}
\frac{\alpha}{2} \frac{3 p q}{R^{5}} A_{5} \\
-\frac{1-\alpha}{2} \frac{3 x s}{R^{5}}-\frac{\alpha}{2} \frac{15 x y p q}{R^{7}} \\
\frac{1-\alpha}{2} \frac{3 x t}{R^{5}}-\frac{\alpha}{2} \frac{15 x d p q}{R^{7}}
\end{array}\right) \quad \frac{\partial u_{B}^{o}}{\partial x}=\left(\begin{array}{c}
-\frac{3 p q}{R^{5}} A_{5}+\frac{1-\alpha}{\alpha} J_{3}^{0} \sin \delta \cos \delta \\
\frac{15 x y p q}{R^{7}}+\frac{1-\alpha}{\alpha} J_{1}^{0} \sin \delta \cos \delta \\
\frac{15 c x p q}{R^{7}}+\frac{1-\alpha}{\alpha} K_{3}^{0} \sin \delta \cos \delta
\end{array}\right)
\end{gathered}
$$

$$
\left.\frac{\partial u_{C}^{o}}{\partial x}=\left(\begin{array}{ll}
(1-\alpha) \frac{3 t}{R^{5}} A_{5} & -\alpha \frac{15 c p q}{R^{7}} A_{7} \\
(1-\alpha) \frac{3 x}{R^{5}}\left(\cos 2 \delta-\frac{5 y t}{R^{2}}\right) & -\alpha \frac{15 c x}{R^{7}}\left(s-\frac{7 y p q}{R^{2}}\right) \\
(1-\alpha) \frac{3 x}{R^{5}}\left(2+A_{5}\right) \sin \delta \cos \delta-\alpha \frac{15 c x}{R^{7}}\left(t+\frac{7 d p q}{R^{2}}\right)
\end{array}\right) \quad J_{2}^{0} \equiv \frac{\partial}{\partial x} I_{1}^{0}=-3 x y\left[\frac{3 R+d}{R^{3}(R+d)^{3}}-x^{2} \frac{5 R^{2}+4 R d+d^{2}}{R^{5}(R+d)^{4}}\right] \frac{1}{R^{3}}-\frac{3}{R(R+d)^{2}}+3 x^{2} y^{2} \frac{5 R^{2}+4 R d+d^{2}}{R^{5}(R+d)^{4}}\right) ~ J_{3}^{0} \equiv \frac{\partial}{\partial x} I_{3}^{0}=\frac{A_{3}}{R^{3}}-J_{2}^{0} .
$$

The above three vectors correspond to the contents of the row of Dip-Slip in Table 3.

(3) Tensile

$$
\begin{aligned}
& u_{A}^{o}=\left(\begin{array}{l}
\frac{1-\alpha}{2} \frac{x}{R^{3}}-\frac{\alpha}{2} \frac{3 x q^{2}}{R^{5}} \\
\frac{1-\alpha}{2} \frac{t}{R^{3}}-\frac{\alpha}{2} \frac{3 y q^{2}}{R^{5}} \\
\frac{1-\alpha}{2} \frac{s}{R^{3}}-\frac{\alpha}{2} \frac{3 d q^{2}}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{l}
\frac{3 x q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{3}^{0} \sin ^{2} \delta \\
\frac{3 y q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{1}^{0} \sin ^{2} \delta \\
\frac{3 c q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{5}^{0} \sin ^{2} \delta
\end{array}\right) \\
& u_{C}^{o}=\left(\begin{array}{lr}
-(1-\alpha) \frac{3 x s}{R^{5}} & +\alpha \frac{15 c x q^{2}}{R^{7}}-\alpha \frac{3 x z}{R^{5}} \\
(1-\alpha)\left(\frac{\sin 2 \delta}{R^{3}}-\frac{3 y s}{R^{5}}\right) & +3 c \alpha \frac{t-y}{R^{5}}+\alpha \frac{15 c y q^{2}}{R^{7}}-\alpha \frac{3 y z}{R^{5}} \\
-(1-\alpha)\left(\frac{\cos ^{2} \delta}{R^{3}}+\frac{3 x^{2}}{R^{5}} \sin ^{2} \delta\right) & -3 c \alpha \frac{s-d}{R^{5}}-\alpha \frac{15 c d q^{2}}{R^{7}}+\alpha \frac{3 d z}{R^{5}}
\end{array}\right) \\
& \frac{\partial u_{A}^{o}}{\partial x}=\left(\begin{array}{c}
\frac{1-\alpha}{2} \frac{A_{3}}{R^{3}}-\frac{\alpha}{2} \frac{3 q^{2}}{R^{5}} A_{5} \\
-\frac{1-\alpha}{2} \frac{3 x t}{R^{5}}+\frac{\alpha}{2} \frac{15 x y q^{2}}{R^{7}} \\
-\frac{1-\alpha}{2} \frac{3 x s}{R^{5}}+\frac{\alpha}{2} \frac{15 x d q^{2}}{R^{7}}
\end{array}\right) \quad \frac{\partial u_{B}^{o}}{\partial x}=\left(\begin{array}{c}
\frac{3 q^{2}}{R^{5}} A_{5}-\frac{1-\alpha}{\alpha} J_{3}^{0} \sin ^{2} \delta \\
-\frac{15 x y q^{2}}{R^{7}}-\frac{1-\alpha}{\alpha} J_{1}^{0} \sin ^{2} \delta \\
-\frac{15 c x q^{2}}{R^{7}}-\frac{1-\alpha}{\alpha} K_{3}^{0} \sin ^{2} \delta
\end{array}\right) \quad \begin{array}{l}
A_{3}=1-\frac{3 x^{2}}{R^{2}} \\
A_{5}=1-\frac{5 x^{2}}{R^{2}} \\
A_{7}=1-\frac{7 x^{2}}{R^{2}}
\end{array} \\
& \frac{\partial u_{C}^{o}}{\partial x}=\left(\begin{array}{lll}
-(1-\alpha) \frac{3 s}{R^{5}} A_{5} & +\alpha \frac{15 c q^{2}}{R^{7}} A_{7} & -\alpha \frac{3 z}{R^{5}} A_{5} \\
-(1-\alpha) \frac{3 x}{R^{5}}\left(\sin 2 \delta-\frac{5 y s}{R^{2}}\right) & -\alpha \frac{15 c x}{R^{7}}\left(t-y+\frac{7 y q^{2}}{R^{2}}\right)+\alpha \frac{15 x y z}{R^{7}} \\
(1-\alpha) \frac{3 x}{R^{5}}\left(\cos 2 \delta-A_{5} \sin ^{2} \delta\right)+\alpha \frac{15 c x}{R^{7}}\left(s-d+\frac{7 d q^{2}}{R^{2}}\right)-\alpha \frac{15 x d z}{R^{7}}
\end{array}\right)
\end{aligned}
$$

Here, $\cos 2 \delta-A_{5} \sin ^{2} \delta=1-\left(2+A_{5}\right) \sin ^{2} \delta$
The above three vectors correspond to the contents of the row of Tensile in Table 3.
(4) Inflation

$$
\begin{aligned}
& u_{A}^{o}=\left(\begin{array}{c}
-\frac{1-\alpha}{2} \frac{x}{R^{3}} \\
-\frac{1-\alpha}{2} \frac{y}{R^{3}} \\
-\frac{1-\alpha}{2} \frac{d}{R^{3}}
\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{c}
\frac{1-\alpha}{\alpha} \frac{x}{R^{3}} \\
\frac{1-\alpha}{\alpha} \frac{y}{R^{3}} \\
\frac{1-\alpha}{\alpha} \frac{d}{R^{3}}
\end{array}\right) \quad u_{C}^{o}=\left(\begin{array}{c}
(1-\alpha) \frac{3 x d}{R^{5}} \\
(1-\alpha) \frac{3 y d}{R^{5}} \\
(1-\alpha) \frac{C_{3}}{R^{3}}
\end{array}\right) \\
& \frac{\partial u_{A}^{o}}{\partial x}=\left(\begin{array}{c}
-\frac{1-\alpha}{2} \frac{A_{3}}{R^{3}} \\
\frac{1-\alpha}{2} \frac{3 x y}{R^{5}} \\
\frac{1-\alpha}{2} \frac{3 x d}{R^{5}}
\end{array}\right) \quad \frac{\partial u_{B}^{o}}{\partial x}=\left(\begin{array}{c}
\frac{1-\alpha}{\alpha} \frac{A_{3}}{R^{3}} \\
-\frac{1-\alpha}{\alpha} \frac{3 x y}{R^{5}} \\
-\frac{1-\alpha}{\alpha} \frac{3 x d}{R^{5}}
\end{array}\right) \quad \frac{\partial u_{C}^{o}}{\partial x}=\left(\begin{array}{c}
(1-\alpha) \frac{3 d}{R^{5}} A_{5} \\
-(1-\alpha) \frac{15 x y d}{R^{7}} \\
-(1-\alpha) \frac{3 x}{R^{5}} C_{5}
\end{array}\right) \\
& A_{3}=1-\frac{3 x^{2}}{R^{2}} \\
& A_{5}=1-\frac{5 x^{2}}{R^{2}} \\
& C_{5}=1-\frac{5 d^{2}}{R^{2}}
\end{aligned}
$$

The above three vectors correspond to the contents of the row of Inflation in Table 3.

[II] Derivation of Table 4 (y-Derivative)

Table 4 can be derived by differentiation of Table 2 with y-coordinate (refer Appendix : Table of Differentiation). In the following, the notation is matched with Tables in Okada (1992).

Displacement : $u^{0}(x, y, z)=\frac{M_{0}}{2 \pi \mu}\left[u^{0}{ }_{A}(x, y, z)-u^{0}{ }_{A}(x, y,-z)+u^{0}{ }_{B}(x, y, z)+z u^{0}{ }_{C}(x, y, z)\right]$
y-Derivative : $\frac{\partial u^{0}}{\partial y}(x, y, z)=\frac{M_{0}}{2 \pi \mu}\left[\frac{\partial u^{0} A}{\partial y}(x, y, z)-\frac{\partial u^{0} A}{\partial y}(x, y,-z)+\frac{\partial u^{0}{ }_{B}}{\partial y}(x, y, z)+z \frac{\partial u^{0}{ }_{C}}{\partial y}(x, y, z)\right]$

(1) Strike slip

$$
u_{A}^{o}=\left(\begin{array}{c}
\frac{1-\alpha}{2} \frac{q}{R^{3}} \\
\frac{1-\alpha}{2} \frac{\alpha x^{2} q}{R^{5}} \\
\frac{1-\alpha}{2} \frac{x}{R^{3}} \sin \delta+\frac{\alpha}{2} \frac{3 x y q}{R^{5}} \\
-\frac{1-\alpha}{2} \frac{x}{R^{3}} \cos \delta+\frac{\alpha}{2} \frac{3 x d q}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{c}
-\frac{3 x^{2} q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{1}^{0} \sin \delta \\
-\frac{3 x y q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{2}^{0} \sin \delta \\
-\frac{3 c x q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{4}^{0} \sin \delta
\end{array}\right) \quad u_{C}^{o}=\left(\begin{array}{c}
-(1-\alpha) \frac{A_{3}}{R^{3}} \cos \delta+\alpha \frac{3 c q}{R^{5}} A_{5} \\
(1-\alpha) \frac{3 x y}{R^{5}} \cos \delta+\alpha \frac{3 c x}{R^{5}}\left(\sin \delta-\frac{5 y q}{R^{2}}\right) \\
-(1-\alpha) \frac{3 x y}{R^{5}} \sin \delta+\alpha \frac{3 c x}{R^{5}}\left(\cos \delta+\frac{5 d q}{R^{2}}\right)
\end{array}\right)
$$

where, $\quad d=c-z, q=y \sin \delta-d \cos \delta, R^{2}=x^{2}+y^{2}+d^{2} \quad$ and

$$
\begin{gathered}
I_{1}^{0}=y\left[\frac{1}{R(R+d)^{2}}-x^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \quad I_{2}^{0}=x\left[\frac{1}{R(R+d)^{2}}-y^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \quad I_{4}^{0}=-x y \frac{2 R+d}{R^{3}(R+d)^{2}} \\
\frac{\partial u_{A}^{o}}{\partial y}=\left(\begin{array}{c}
\frac{1-\alpha}{2} \frac{1}{R^{3}}\left(\sin \delta-\frac{3 y q}{R^{2}}\right)+\frac{\alpha}{2} \frac{3 x^{2}}{R^{5}} U \\
-\frac{1-\alpha}{2} \frac{3 x y}{R^{5}} \sin \delta \\
\frac{1-\alpha}{2} \frac{\alpha x y}{R^{5}} \cos \delta \\
\left.+\frac{3 x y}{R^{5}} U+\frac{3 x q}{R^{5}}\right)
\end{array}\right) \quad \begin{array}{c}
\frac{\partial u_{B}^{o}}{\partial y}=\left(\begin{array}{cc}
-\frac{3 x^{2}}{R^{5}} U & -\frac{1-\alpha}{\alpha} J_{2}^{0} \sin \delta \\
-\frac{3 x y}{R^{5}} U-\frac{3 x q}{R^{5}}-\frac{1-\alpha}{\alpha} J_{4}^{0} \sin \delta \\
-\frac{3 c x}{R^{5}} U & -\frac{1-\alpha}{\alpha} K_{2}^{0} \sin \delta
\end{array}\right) \quad U=\sin \delta-\frac{5 y q}{R^{2}} \\
\frac{\partial u_{C}^{o}}{\partial y}=\left(\begin{array}{c}
(1-\alpha) \frac{3 y}{R^{5}} A_{5} \cos \delta+\alpha \frac{3 c}{R^{5}}\left(A_{5} \sin \delta-\frac{5 y q}{R^{2}} A_{7}\right) \\
(1-\alpha) \frac{3 x}{R^{5}} B_{5} \cos \delta-\alpha \frac{15 c x}{R^{7}}\left(2 y \sin \delta+q B_{7}\right) \\
-(1-\alpha) \frac{3 x}{R^{5}} B_{5} \sin \delta+\alpha \frac{15 c x}{R^{7}}\left(d \sin \delta-y \cos \delta-\frac{7 y d q}{R^{2}}\right)
\end{array}\right) \\
J_{2}^{0} \equiv \frac{\partial}{\partial y} I_{1}^{0}=\frac{1}{R^{3}}-\frac{3}{R(R+d)^{2}}+3 x^{2} y^{2} \frac{5 R^{2}+4 R d+d^{2}}{R^{5}(R+d)^{4}} \\
J_{4}^{0} \equiv \frac{\partial}{\partial y} I_{2}^{0}=-3 x y\left[\frac{3 R+d}{R^{3}(R+d)^{3}}-y^{2} \frac{5 R^{2}+4 R d+d^{2}}{R^{5}(R+d)^{4}}\right] \\
K_{2}^{0} \equiv \frac{\partial}{\partial y} I_{4}^{0}=-x\left[\frac{2 R+d}{R^{3}(R+d)^{2}}-y^{2} \frac{8 R^{2}+9 R d+3 d^{2}}{R^{5}(R+d)^{3}}\right]
\end{array}
\end{gathered}
$$

Here, $d \sin \delta-y \cos \delta-\frac{7 y d q}{R^{2}}=d \sin \delta-y \cos \delta-\frac{7 y d}{R^{2}}(y \sin \delta-d \cos \delta)=d\left(1-\frac{7 y^{2}}{R^{2}}\right) \sin \delta-y\left(1-\frac{7 d^{2}}{R^{2}}\right) \cos \delta=d B_{7} \sin \delta-y C_{7} \cos \delta$
The above three vectors correspond to the contents of the row of Strike-Slip in Table 4.
(2) Dip slip

$$
u_{A}^{o}=\left(\begin{array}{r}
\frac{\alpha}{2} \frac{3 x p q}{R^{5}} \\
\frac{1-\alpha}{2} \frac{s}{R^{3}}+\frac{\alpha}{2} \frac{3 y p q}{R^{5}} \\
-\frac{1-\alpha}{2} \frac{t}{R^{3}}+\frac{\alpha}{2} \frac{3 d p q}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{r}
-\frac{3 x p q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{3}^{0} \sin \delta \cos \delta \\
-\frac{3 y p q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{1}^{0} \sin \delta \cos \delta \\
-\frac{3 c p q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{5}^{0} \sin \delta \cos \delta
\end{array}\right) \quad u_{C}^{o}=\left(\begin{array}{cc}
(1-\alpha) \frac{3 x t}{R^{5}} & -\alpha \frac{15 c x p q}{R^{7}} \\
(1-\alpha)\left(\frac{3 y t}{R^{5}}-\frac{\cos 2 \delta}{R^{3}}\right)-\alpha \frac{15 c y p q}{R^{7}}+\alpha \frac{3 c s}{R^{5}} \\
-(1-\alpha) \frac{A_{3}}{R^{3}} \sin \delta \cos \delta & +\alpha \frac{15 c d p q}{R^{7}}+\alpha \frac{3 c t}{R^{5}}
\end{array}\right)
$$

where, $d=c-z,\left\{\begin{array}{l}p=y \cos \delta+d \sin \delta \\ q=y \sin \delta-d \cos \delta\end{array}, \quad\left\{\begin{array}{l}s=p \sin \delta+q \cos \delta=y \sin 2 \delta-d \cos 2 \delta \\ t=p \cos \delta-q \sin \delta=y \cos 2 \delta+d \sin 2 \delta\end{array} \quad\right.\right.$ and

$$
\begin{gathered}
I_{1}^{0}=y\left[\frac{1}{R(R+d)^{2}}-x^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \quad I_{2}^{0}=x\left[\frac{1}{R(R+d)^{2}}-y^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \quad I_{3}^{0}=\frac{x}{R^{3}}-I_{2}^{0} \quad I_{5}^{0}=\frac{1}{R(R+d)}-x^{2} \frac{2 R+d}{R^{3}(R+d)^{2}} \\
\frac{\partial u_{A}^{o}}{\partial y}=\left(\begin{array}{c}
\frac{\alpha}{2} \frac{3 x}{R^{5}} V \\
\frac{1-\alpha}{2} \frac{1}{R^{3}}\left(\sin 2 \delta-\frac{3 y s}{R^{2}}\right)+\frac{\alpha}{2}\left(\frac{3 y}{R^{5}} V+\frac{3 p q}{R^{5}}\right) \\
-\frac{1-\alpha}{2} \frac{1}{R^{3}}\left(\cos 2 \delta-\frac{3 y t}{R^{2}}\right)+\frac{\alpha}{2} \frac{3 d}{R^{5}} V
\end{array}\right) \quad \frac{\partial u_{B}^{o}}{\partial y}=\left(\begin{array}{cc}
-\frac{3 x}{R^{5}} V & +\frac{1-\alpha}{\alpha} J_{1}^{0} \sin \delta \cos \delta \\
-\frac{3 y}{R^{5}} V-\frac{3 p q}{R^{5}}+\frac{1-\alpha}{\alpha} J_{2}^{0} \sin \delta \cos \delta \\
-\frac{3 c}{R^{5}} V & +\frac{1-\alpha}{\alpha} K_{1}^{0} \sin \delta \cos \delta
\end{array}\right) \quad V=s-\frac{5 y p q}{R^{2}}
\end{gathered}
$$

$$
\frac{\partial u_{C}^{o}}{\partial y}=\left(\begin{array}{l}
(1-\alpha) \frac{3 x}{R^{5}}\left(\cos 2 \delta-\frac{5 y t}{R^{2}}\right)-\alpha \frac{15 c x}{R^{7}}\left(s-\frac{7 y p q}{R^{2}}\right) \\
(1-\alpha) \frac{3}{R^{5}}\left(2 y \cos 2 \delta+t B_{5}\right)+\alpha \frac{3 c}{R^{5}}\left(\sin 2 \delta-\frac{10 y s}{R^{2}}-\frac{5 p q}{R^{2}} B_{7}\right) \\
(1-\alpha) \frac{3 y}{R^{5}} A_{5} \sin \delta \cos \delta-\alpha \frac{3 c}{R^{5}}\left(-\cos 2 \delta+\frac{5(y t-d s)}{R^{2}}+\frac{35 y d p q}{R^{4}}\right)
\end{array}\right)
$$

$$
\begin{aligned}
J_{1}^{0} \equiv \frac{\partial}{\partial y} I_{3}^{0} & =-\frac{3 x y}{R^{5}}-J_{4}^{0} \\
& =-3 x y\left[\frac{3 R+d}{R^{3}(R+d)^{3}}-x^{2} \frac{5 R^{2}+4 R d+d^{2}}{R^{5}(R+d)^{4}}\right] \\
J_{2}^{0} \equiv \frac{\partial}{\partial y} I_{1}^{0} & =\frac{1}{R^{3}}-\frac{3}{R(R+d)^{2}}+3 x^{2} y^{2} \frac{5 R^{2}+4 R d+d^{2}}{R^{5}(R+d)^{4}} \\
K_{1}^{0} \equiv \frac{\partial}{\partial y} I_{5}^{0} & =-y\left[\frac{2 R+d}{R^{3}(R+d)^{2}}-x^{2} \frac{8 R^{2}+9 R d+3 d^{2}}{R^{5}(R+d)^{3}}\right]
\end{aligned}
$$

Here, $\frac{5(y t-d s)}{R^{2}}=\frac{5\left(y^{2}+d^{2}\right)}{R^{2}} \cos 2 \delta=\frac{5\left(R^{2}-x^{2}\right)}{R^{2}} \cos 2 \delta=\left(4+A_{5}\right) \cos 2 \delta$
The above three vectors correspond to the contents of the row of Dip-Slip in Table 4.

(3) Tensile

$$
\begin{aligned}
& u_{A}^{o}=\left(\begin{array}{l}
\frac{1-\alpha}{2} \frac{x}{R^{3}}-\frac{\alpha}{2} \frac{3 x q^{2}}{R^{5}} \\
\frac{1-\alpha}{2} \frac{t}{R^{3}}-\frac{\alpha}{2} \frac{3 y q^{2}}{R^{5}} \\
\frac{1-\alpha}{2} \frac{s}{R^{3}}-\frac{\alpha}{2} \frac{3 d q^{2}}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{l}
\frac{3 x q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{3}^{0} \sin ^{2} \delta \\
\frac{3 y q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{1}^{0} \sin ^{2} \delta \\
\frac{3 c q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{5}^{0} \sin ^{2} \delta
\end{array}\right) \\
& u_{C}^{o}=\left(\begin{array}{lr}
-(1-\alpha) \frac{3 x s}{R^{5}} & +\alpha \frac{15 c x q^{2}}{R^{7}}-\alpha \frac{3 x z}{R^{5}} \\
(1-\alpha)\left(\frac{\sin 2 \delta}{R^{3}}-\frac{3 y s}{R^{5}}\right) & +3 c \alpha \frac{t-y}{R^{5}}+\alpha \frac{15 c y q^{2}}{R^{7}}-\alpha \frac{3 y z}{R^{5}} \\
-(1-\alpha)\left(\frac{\cos ^{2} \delta}{R^{3}}+\frac{3 x^{2}}{R^{5}} \sin ^{2} \delta\right) & -3 c \alpha \frac{s-d}{R^{5}}-\alpha \frac{15 c d q^{2}}{R^{7}}+\alpha \frac{3 d z}{R^{5}}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial u_{C}^{o}}{\partial y}=\left(\begin{array}{cc}
-(1-\alpha) \frac{3 x}{R^{5}}\left(\sin 2 \delta-\frac{5 y s}{R^{2}}\right) & -\alpha \frac{15 c x}{R^{7}}\left(-2 q \sin \delta+\frac{7 y q^{2}}{R^{2}}\right) \\
-(1-\alpha) \frac{3}{R^{5}}\left(2 y \sin 2 \delta+s B_{5}\right)-\alpha \frac{3 c}{R^{5}}\left[2 \sin ^{2} \delta+\frac{5 y}{R^{2}}(t-y-2 q \sin \delta)-\frac{5 q^{2}}{R^{2}} B_{7}\right]-\alpha \frac{3 z}{R^{7}} B_{5} \\
(1-\alpha) \frac{3 y}{R^{5}}\left(1-A_{5} \sin ^{2} \delta\right) & +\alpha \frac{3 c}{R^{5}}\left[-\sin 2 \delta+\frac{5(y s+d t)}{R^{2}}-\frac{5 y d}{R^{2}}\left(2-\frac{7 q^{2}}{R^{2}}\right)\right]-\alpha \frac{15 y d z}{R^{7}}
\end{array}\right)
\end{aligned}
$$

Here, since $\left\{\begin{array}{l}y=p \cos \delta+q \sin \delta \\ t=p \cos \delta-q \sin \delta\end{array}, \quad-2 q \sin \delta=t-y\right.$
and $\frac{5(y s+d t)}{R^{2}}=\frac{5\left(y^{2}+d^{2}\right)}{R^{2}} \sin 2 \delta=\frac{5\left(R^{2}-x^{2}\right)}{R^{2}} \sin 2 \delta=\left(4+A_{5}\right) \sin 2 \delta$
The above three vectors correspond to the contents of the row of Tensile in Table 4.
(4) Inflation

$$
\begin{aligned}
& u_{A}^{o}=\left(\begin{array}{c}
-\frac{1-\alpha}{2} \frac{x}{R^{3}} \\
-\frac{1-\alpha}{2} \frac{y}{R^{3}} \\
-\frac{1-\alpha}{2} \frac{d}{R^{3}}
\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{c}
\frac{1-\alpha}{\alpha} \frac{x}{R^{3}} \\
\frac{1-\alpha}{\alpha} \frac{y}{R^{3}} \\
\frac{1-\alpha}{\alpha} \frac{d}{R^{3}}
\end{array}\right) \\
& \frac{\partial u_{A}^{o}}{\partial y}=\left(\begin{array}{c}
\frac{1-\alpha}{2} \frac{3 x y}{R^{5}} \\
-\frac{1-\alpha}{2} \frac{B_{3}}{R^{3}} \\
\frac{1-\alpha}{2} \frac{3 y d}{R^{5}}
\end{array}\right)=\left(\begin{array}{c}
(1-\alpha) \frac{3 x d}{R^{5}} \\
(1-\alpha) \frac{3 y d}{R^{5}} \\
(1-\alpha) \frac{C_{3}}{R^{3}}
\end{array}\right) \\
& C_{3}=1-\frac{3 d^{2}}{R^{2}} \\
& -\frac{\partial u_{B}^{o}}{\partial y}=\left(\begin{array}{c}
-\frac{1-\alpha}{\alpha} \frac{3 x y}{R^{5}} \\
\frac{1-\alpha}{\alpha} \frac{B_{3}}{R^{3}} \\
-\frac{3 y d}{R^{5}}
\end{array}\right)
\end{aligned} \quad \frac{\partial u_{C}^{o}}{\partial y}=\left(\begin{array}{c}
-(1-\alpha) \frac{15 x y d}{R^{7}} \\
(1-\alpha) \frac{3 d}{R^{5}} B_{5} \\
-(1-\alpha) \frac{3 y}{R^{5}} C_{5}
\end{array}\right) \quad \begin{aligned}
& B_{3}=1-\frac{3 y^{2}}{R^{2}} \\
& B_{5}=1-\frac{5 y^{2}}{R^{2}} \\
& C_{5}=1-\frac{5 d^{2}}{R^{2}}
\end{aligned}
$$

The above three vectors correspond to the contents of the row of Inflation in Table 4.

[III] Derivation of Table 5 (z-Derivative)

Table 5 can be derived by differentiation of Table 2 with z-coordinate (refer Appendix : Table of Differentiation). In the following, the notation is matched with Tables in Okada (1992).

Displacement : $u^{0}(x, y, z)=\frac{M_{0}}{2 \pi \mu}\left[u_{A}^{0}(x, y, z)-u^{0}{ }_{A}(x, y,-z)+u_{B}{ }_{B}(x, y, z)+z u^{0}{ }_{C}(x, y, z)\right]$
z-Derivative : $\frac{\partial u^{0}}{\partial z}(x, y, z)=\frac{M_{0}}{2 \pi \mu}\left[\frac{\partial u^{0}{ }_{A}}{\partial z}(x, y, z)+\frac{\partial u^{0}{ }_{A}}{\partial z}(x, y,-z)+\frac{\partial u^{0}{ }_{B}}{\partial z}(x, y, z)+u^{0}(x, y, z)+z \frac{\partial u^{0}{ }_{C}}{\partial z}(x, y, z)\right]$
(1) Strike slip

$$
u_{A}^{o}=\left(\begin{array}{cc}
\frac{1-\alpha}{2} \frac{q}{R^{3}} & +\frac{\alpha}{2} \frac{3 x^{2} q}{R^{5}} \\
\frac{1-\alpha}{2} \frac{x}{R^{3}} \sin \delta+\frac{\alpha}{2} \frac{3 x y q}{R^{5}} \\
-\frac{1-\alpha}{2} \frac{x}{R^{3}} \cos \delta+\frac{\alpha}{2} \frac{3 x d q}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{c}
-\frac{3 x^{2} q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{1}^{0} \sin \delta \\
-\frac{3 x y q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{2}^{0} \sin \delta \\
-\frac{3 c x q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{4}^{0} \sin \delta
\end{array}\right) \quad u_{C}^{o}=\left(\begin{array}{c}
-(1-\alpha) \frac{A_{3}}{R^{3}} \cos \delta+\alpha \frac{3 c q}{R^{5}} A_{5} \\
(1-\alpha) \frac{3 x y}{R^{5}} \cos \delta+\alpha \frac{3 c x}{R^{5}}\left(\sin \delta-\frac{5 y q}{R^{2}}\right) \\
-(1-\alpha) \frac{3 x y}{R^{5}} \sin \delta+\alpha \frac{3 c x}{R^{5}}\left(\cos \delta+\frac{5 d q}{R^{2}}\right)
\end{array}\right)
$$

where, $\quad d=c-z, q=y \sin \delta-d \cos \delta, R^{2}=x^{2}+y^{2}+d^{2} \quad$ and

$$
\begin{aligned}
& I_{1}^{0}=y\left[\frac{1}{R(R+d)^{2}}-x^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \quad I_{2}^{0}=x\left[\frac{1}{R(R+d)^{2}}-y^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \quad I_{4}^{0}=-x y \frac{2 R+d}{R^{3}(R+d)^{2}} \\
& \frac{\partial u_{A}^{o}}{\partial z}=\left(\begin{array}{cc}
\frac{1-\alpha}{2} \frac{1}{R^{3}}\left(\cos \delta+\frac{3 d q}{R^{2}}\right) & +\frac{\alpha}{2} \frac{3 x^{2}}{R^{5}} U^{\prime} \\
\frac{1-\alpha}{2} \frac{3 x d}{R^{5}} \sin \delta & +\frac{\alpha}{2} \frac{3 x y}{R^{5}} U^{\prime} \\
-\frac{1-\alpha}{2} \frac{3 x d}{R^{5}} \cos \delta & +\frac{\alpha}{2}\left(\frac{3 x d}{R^{5}} U^{\prime}-\frac{3 x q}{R^{5}}\right)
\end{array}\right) \quad \frac{\partial u_{B}^{o}}{\partial z}=\left(\begin{array}{l}
-\frac{3 x^{2}}{R^{5}} U^{\prime}+\frac{1-\alpha}{\alpha} K_{1}^{0} \sin \delta \\
-\frac{3 x y}{R^{5}} U^{\prime}+\frac{1-\alpha}{\alpha} K_{2}^{0} \sin \delta \\
-\frac{3 c x}{R^{5}} U^{\prime}+\frac{1-\alpha}{\alpha} K_{4}^{0} \sin \delta
\end{array}\right) \quad U^{\prime}=\cos \delta+\frac{5 d q}{R^{2}} \\
& \frac{\partial u_{C}^{o}}{\partial z}=\left(\begin{array}{l}
-(1-\alpha) \frac{3 d}{R^{5}} A_{5} \cos \delta+\alpha \frac{3 c}{R^{5}}\left(A_{5} \cos \delta+\frac{5 d q}{R^{2}} A_{7}\right) \\
(1-\alpha) \frac{15 x y d}{R^{7}} \cos \delta+\alpha \frac{15 c x}{R^{7}}\left(d \sin \delta-y \cos \delta-\frac{7 y d q}{R^{2}}\right) \\
-(1-\alpha) \frac{15 x y d}{R^{7}} \sin \delta+\alpha \frac{15 c x}{R^{7}}\left(2 d \cos \delta-q C_{7}\right)
\end{array}\right) \quad \begin{array}{l}
K_{1}^{0} \equiv-\frac{\partial}{\partial z} I_{1}^{0}=-y\left[\frac{2 R+d}{R^{3}(R+d)^{2}}-x^{2} \frac{8 R^{2}+9 R d+3 d^{2}}{R^{5}(R+d)^{3}}\right] \\
K_{2}^{0} \equiv-\frac{\partial}{\partial z} I_{2}^{0}=-x\left[\frac{2 R+d}{R^{3}(R+d)^{2}}-y^{2} \frac{8 R^{2}+9 R d+3 d^{2}}{R^{5}(R+d)^{3}}\right] \\
K_{4}^{0} \equiv-\frac{\partial}{\partial z} I_{4}^{0}=\frac{3 x y}{R^{5}}
\end{array}
\end{aligned}
$$

Here, $d \sin \delta-y \cos \delta-\frac{7 y d q}{R^{2}}=d \sin \delta-y \cos \delta-\frac{7 y d}{R^{2}}(y \sin \delta-d \cos \delta)=d\left(1-\frac{7 y^{2}}{R^{2}}\right) \sin \delta-y\left(1-\frac{7 d^{2}}{R^{2}}\right) \cos \delta=d B_{7} \sin \delta-y C_{7} \cos \delta$
The above three vectors correspond to the contents of the row of Strike-Slip in Table 5.
(2) Dip slip

$$
u_{A}^{o}=\left(\begin{array}{r}
\frac{\alpha}{2} \frac{3 x p q}{R^{5}} \\
\frac{1-\alpha}{2} \frac{s}{R^{3}}+\frac{\alpha}{2} \frac{3 y p q}{R^{5}} \\
-\frac{1-\alpha}{2} \frac{t}{R^{3}}+\frac{\alpha}{2} \frac{3 d p q}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{c}
-\frac{3 x p q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{3}^{0} \sin \delta \cos \delta \\
-\frac{3 y p q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{1}^{0} \sin \delta \cos \delta \\
-\frac{3 c p q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{5}^{0} \sin \delta \cos \delta
\end{array}\right) \quad u_{C}^{o}=\left(\begin{array}{c}
(1-\alpha) \frac{3 x t}{R^{5}} \\
(1-\alpha)\left(\frac{3 y t}{R^{5}}-\frac{15 c x p q}{R^{7}}\right. \\
-(1-\alpha) \frac{A_{3}}{R^{3}} \sin \delta \cos \delta \\
-\alpha \frac{15 c y p q}{R^{7}}+\alpha \frac{3 c s}{R^{5}} \\
+\alpha \frac{15 c d p q}{R^{7}}+\alpha \frac{3 c t}{R^{5}}
\end{array}\right)
$$

where, $d=c-z,\left\{\begin{array}{l}p=y \cos \delta+d \sin \delta \\ q=y \sin \delta-d \cos \delta\end{array}, \quad\left\{\begin{array}{l}s=p \sin \delta+q \cos \delta=y \sin 2 \delta-d \cos 2 \delta \\ t=p \cos \delta-q \sin \delta=y \cos 2 \delta+d \sin 2 \delta\end{array} \quad\right.\right.$ and

$$
\begin{aligned}
& I_{1}^{0}=y\left[\frac{1}{R(R+d)^{2}}-x^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \quad I_{2}^{0}=x\left[\frac{1}{R(R+d)^{2}}-y^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \\
& \frac{\alpha}{2} \frac{3 x}{R^{5}} V^{\prime} \\
& \frac{\partial u_{A}^{o}}{\partial z}=\left(\begin{array}{c}
1-\alpha \\
\frac{1-\alpha}{2} \frac{1}{R^{3}}\left(\cos 2 \delta+\frac{3 d s}{R^{2}}\right)+\frac{\alpha}{2} \frac{3 y}{R^{5}} V^{\prime} \\
\frac{1-\alpha}{2} \frac{1}{R^{3}}\left(\sin 2 \delta-\frac{3 d t}{R^{2}}\right)+\frac{\alpha}{2}\left(\frac{3 d}{R^{5}} V^{\prime}-\frac{3 p q}{R^{5}}\right)
\end{array}\right) \\
& V^{\prime}=t+\frac{5 d p q}{R^{2}} \\
& \frac{\partial u_{B}^{o}}{\partial z}=\left(\begin{array}{c}
-\frac{3 x}{R^{5}} V^{\prime}-\frac{1-\alpha}{\alpha} K_{3}^{0} \sin \delta \cos \delta \\
-\frac{3 y}{R^{5}} V^{\prime}-\frac{1-\alpha}{\alpha} K_{1}^{0} \sin \delta \cos \delta \\
-\frac{3 c}{R^{3}(R+d)^{2}} \\
V^{\prime}-\frac{1-\alpha}{\alpha} K_{5}^{0} \sin \delta \cos \delta
\end{array}\right) \\
& K_{3}^{0} \equiv-\frac{\partial}{\partial z} I_{3}^{0}=-\frac{3 x d}{R^{5}}-K_{2}^{0} \\
& K_{1}^{0} \equiv-\frac{\partial}{\partial z} I_{1}^{0}=-y\left[\frac{2 R+d}{R^{3}(R+d)^{2}}-x^{2} \frac{8 R^{2}+9 R d+3 d^{2}}{R^{5}(R+d)^{3}}\right] \\
& K_{5}^{0} \equiv-\frac{\partial}{2} I_{5}^{0}=-\frac{A_{3}}{n^{2}}
\end{aligned}
$$

$$
\frac{\partial u_{C}^{o}}{\partial z}=\left(\begin{array}{ll}
-(1-\alpha) \frac{3 x}{R^{5}}\left(\sin 2 \delta-\frac{5 d t}{R^{2}}\right) & -\alpha \frac{15 c x}{R^{7}}\left(t+\frac{7 d p q}{R^{2}}\right) \\
-(1-\alpha) \frac{3}{R^{5}}\left[y \sin 2 \delta+d \cos 2 \delta-\frac{5 y d t}{R^{2}}\right]-\alpha \frac{3 c}{R^{5}}\left(-\cos 2 \delta+\frac{5(y t-d s)}{R^{2}}+\frac{35 y d p q}{R^{4}}\right) \\
-(1-\alpha) \frac{3 d}{R^{5}} A_{5} \sin \delta \cos \delta & -\alpha \frac{3 c}{R^{5}}\left(\sin 2 \delta-\frac{10 d t}{R^{2}}+\frac{5 p q}{R^{2}} C_{7}\right)
\end{array}\right)
$$

Here, $y \sin 2 \delta+d \cos 2 \delta-\frac{5 y d t}{R^{2}}=y \sin 2 \delta+d \cos 2 \delta-\frac{5 y d}{R^{2}}(y \cos 2 \delta+d \sin 2 \delta)=d B_{5} \cos 2 \delta+y C_{5} \sin 2 \delta$
and $\quad \frac{5(y t-d s)}{R^{2}}=\frac{5\left(y^{2}+d^{2}\right)}{R^{2}} \cos 2 \delta=\frac{5\left(R^{2}-x^{2}\right)}{R^{2}} \cos 2 \delta=\left(4+A_{5}\right) \cos 2 \delta$
The above three vectors correspond to the contents of the row of Dip-Slip in Table 5.
(3) Tensile

$$
\begin{aligned}
& u_{A}^{o}=\left(\begin{array}{l}
\frac{1-\alpha}{2} \frac{x}{R^{3}}-\frac{\alpha}{2} \frac{3 x q^{2}}{R^{5}} \\
\frac{1-\alpha}{2} \frac{t}{R^{3}}-\frac{\alpha}{2} \frac{3 y q^{2}}{R^{5}} \\
\frac{1-\alpha}{2} \frac{s}{R^{3}}-\frac{\alpha}{2} \frac{3 d q^{2}}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{l}
\frac{3 x q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{3}^{0} \sin ^{2} \delta \\
\frac{3 y q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{1}^{0} \sin ^{2} \delta \\
\frac{3 c q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{5}^{0} \sin ^{2} \delta
\end{array}\right) \\
& u_{C}^{o}=\left(\begin{array}{ll}
-(1-\alpha) \frac{3 x s}{R^{5}} & +\alpha \frac{15 c x q^{2}}{R^{7}}-\alpha \frac{3 x z}{R^{5}} \\
(1-\alpha)\left(\frac{\sin 2 \delta}{R^{3}}-\frac{3 y s}{R^{5}}\right) & +3 c \alpha \frac{t-y}{R^{5}}+\alpha \frac{15 c y q^{2}}{R^{7}}-\alpha \frac{3 y z}{R^{5}} \\
-(1-\alpha)\left(\frac{\cos ^{2} \delta}{R^{3}}+\frac{3 x^{2}}{R^{5}} \sin ^{2} \delta\right) & -3 c \alpha \frac{s-d}{R^{5}}-\alpha \frac{15 c d q^{2}}{R^{7}}+\alpha \frac{3 d z}{R^{5}}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial u_{C}^{o}}{\partial z}=\left(\begin{array}{lr}
-(1-\alpha) \frac{3 x}{R^{5}}\left(\cos 2 \delta+\frac{5 d s}{R^{2}}\right) & +\alpha \frac{15 c x}{R^{7}}\left(2 q \cos \delta+\frac{7 d q^{2}}{R^{2}}\right)-\alpha \frac{3 x}{R^{5}}\left(1+\frac{5 d z}{R^{2}}\right) \\
(1-\alpha) \frac{3}{R^{5}}\left(d \sin 2 \delta-y \cos 2 \delta-\frac{5 y d s}{R^{2}}\right)+\alpha \frac{3 c}{R^{5}}\left[-\sin 2 \delta+\frac{5 d(t-y)}{R^{2}}+\frac{5 y}{R^{2}}\left(2 q \cos \delta+\frac{7 d q^{2}}{R^{2}}\right)\right]-\alpha \frac{3 y}{R^{5}}\left(1+\frac{5 d z}{R^{2}}\right) \\
-(1-\alpha) \frac{3 d}{R^{5}}\left(1-A_{5} \sin ^{2} \delta\right) & -\alpha \frac{3 c}{R^{5}}\left[1+\cos 2 \delta+\frac{5 d(s-d)}{R^{2}}+\frac{5}{R^{2}}\left(2 d q \cos \delta-q^{2} C_{7}\right)\right]+\alpha \frac{3 c}{R^{5}}-\alpha \frac{3 z}{R^{5}}\left(1+C_{5}\right)
\end{array}\right)
\end{aligned}
$$

Here, $d \sin 2 \delta-y \cos 2 \delta-\frac{5 y d s}{R^{2}}=d \sin 2 \delta-y \cos 2 \delta-\frac{5 y d}{R^{2}}(y \sin 2 \delta-d \cos 2 \delta)=d B_{5} \sin 2 \delta-y C_{5} \cos 2 \delta$
Since $\left\{\begin{array}{l}d=p \sin \delta-q \cos \delta \\ s=p \sin \delta+q \cos \delta\end{array}, \quad 2 q \cos \delta=s-d\right.$
So, $\frac{5 d(t-y)}{R^{2}}+\frac{5 y}{R^{2}}\left(2 q \cos \delta+\frac{7 d q^{2}}{R^{2}}\right)=\frac{5(y s+d t)}{R^{2}}-\frac{5 y d}{R^{2}}\left(2-\frac{7 q^{2}}{R^{2}}\right)=\frac{5\left(R^{2}-x^{2}\right)}{R^{2}} \sin 2 \delta-\frac{5 y d}{R^{2}}\left(2-\frac{7 q^{2}}{R^{2}}\right)=\left(4+A_{5}\right) \sin 2 \delta-\frac{5 y d}{R^{2}}\left(2-\frac{7 q^{2}}{R^{2}}\right)$
The above three vectors correspond to the contents of the row of Tensile in Table 5.
(4) Inflation

$$
\begin{aligned}
& u_{A}^{o}=\left(\begin{array}{c}
-\frac{1-\alpha}{2} \frac{x}{R^{3}} \\
-\frac{1-\alpha}{2} \frac{y}{R^{3}} \\
-\frac{1-\alpha}{2} \frac{d}{R^{3}}
\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{c}
\frac{1-\alpha}{\alpha} \frac{x}{R^{3}} \\
\frac{1-\alpha}{\alpha} \frac{y}{R^{3}} \\
\frac{1-\alpha}{\alpha} \frac{d}{R^{3}}
\end{array}\right) \quad u_{C}^{o}=\left(\begin{array}{c}
(1-\alpha) \frac{3 x d}{R^{5}} \\
(1-\alpha) \frac{3 y d}{R^{5}} \\
(1-\alpha) \frac{C_{3}}{R^{3}}
\end{array}\right) \\
& \frac{\partial u_{A}^{o}}{\partial z}=\left(\begin{array}{c}
-\frac{1-\alpha}{2} \frac{3 x d}{R^{5}} \\
-\frac{1-\alpha}{2} \frac{3 y d}{R^{5}} \\
\frac{1-\alpha}{2} \frac{C_{3}}{R^{3}}
\end{array}\right) \quad \frac{\partial u_{B}^{o}}{\partial z}=\left(\begin{array}{c}
\frac{1-\alpha}{\alpha} \frac{3 x d}{R^{5}} \\
\frac{1-\alpha}{\alpha} \frac{3 y d}{R^{5}} \\
-\frac{1-\alpha}{\alpha} \frac{C_{3}}{R^{3}}
\end{array}\right) \quad \frac{\partial u_{C}^{o}}{\partial z}=\left(\begin{array}{c}
-(1-\alpha) \frac{3 x}{R^{5}} C_{5} \\
-(1-\alpha) \frac{3 y}{R^{5}} C_{5} \\
(1-\alpha) \frac{3 d}{R^{5}}\left(2+C_{5}\right)
\end{array}\right) \quad C_{5}=1-\frac{5 d^{2}}{R^{2}}
\end{aligned}
$$

The above three vectors correspond to the contents of the row of Inflation in Table 5.

Appendix : Table of Differentiation

$$
R=\sqrt{x^{2}+y^{2}+d^{2}}, \quad d=c-z, \quad\left\{\begin{array}{l}
p=y \cos \delta+d \sin \delta \\
q=y \sin \delta-d \cos \delta
\end{array}, \quad\left\{\begin{array}{l}
s=p \sin \delta+q \cos \delta=y \sin 2 \delta-d \cos 2 \delta \\
t=p \cos \delta-q \sin \delta=y \cos 2 \delta+d \sin 2 \delta
\end{array}\right.\right.
$$

f	$\partial f / \partial x$	$\partial f / \partial y$	$\partial f / \partial z=-\partial f / \partial d$
$1 / R^{3}$	$-3 x / R^{5}$	$-3 y / R^{5}$	$3 d / R^{5}$
x / R^{3}	A_{3} / R^{3}	$-3 x y / R^{5}$	$3 x d / R^{5}$
y / R^{3}	$-3 x y / R^{5}$	B_{3} / R^{3}	$3 y d / R^{5}$
d / R^{3}	$-3 x d / R^{5}$	$-3 y d / R^{5}$	$-C_{3} / R^{3}$
q / R^{3}	$-3 x q / R^{5}$	$\frac{1}{R^{3}}\left(\sin \delta-\frac{3 y q}{R^{2}}\right)$	$\frac{1}{R^{3}}\left(\cos \delta+\frac{3 d q}{R^{2}}\right)$
s / R^{3}	$-3 x s / R^{5}$	$\frac{1}{R^{3}}\left(\sin 2 \delta-\frac{3 y s}{R^{2}}\right)$	$\frac{1}{R^{3}}\left(\cos 2 \delta+\frac{3 d s}{R^{2}}\right)$
t / R^{3}	$-3 x t / R^{5}$	$\frac{1}{R^{3}}\left(\cos 2 \delta-\frac{3 y t}{R^{2}}\right)$	$-\frac{1}{R^{3}}\left(\sin 2 \delta-\frac{3 d t}{R^{2}}\right)$
$\frac{A_{3}}{R^{3}}=\frac{1}{R^{3}}-\frac{3 x^{2}}{R^{5}}$	$-\frac{3 x}{R^{5}}\left(2+A_{5}\right)$	$-\frac{3 y}{R^{5}} A_{5}$	$\frac{3 d}{R^{5}} A_{5}$
$1 / R^{5}$	$-5 x / R^{7}$	$-5 y / R^{7}$	$5 d / R^{7}$
x / R^{5}	A_{5} / R^{5}	$-5 x y / R^{7}$	$5 x d / R^{7}$
y / R^{5}	$-5 x y / R^{7}$	B_{5} / R^{5}	$5 y d / R^{7}$
d / R^{5}	$-5 x d / R^{7}$	$-5 y d / R^{7}$	$-C_{5} / R^{5}$
q / R^{5}	$-5 x q / R^{7}$	$\frac{1}{R^{5}}\left(\sin \delta-\frac{5 y q}{R^{2}}\right)=\frac{U}{R^{5}}$	$\frac{1}{R^{5}}\left(\cos \delta+\frac{5 d q}{R^{2}}\right)=\frac{U^{\prime}}{R^{5}}$
s / R^{5}	$-5 x s / R^{7}$	$\frac{1}{R^{5}}\left(\sin 2 \delta-\frac{5 y s}{R^{2}}\right)$	$\frac{1}{R^{5}}\left(\cos 2 \delta+\frac{5 d s}{R^{2}}\right)$
t / R^{5}	$-5 x t / R^{7}$	$\frac{1}{R^{5}}\left(\cos 2 \delta-\frac{5 y t}{R^{2}}\right)$	$-\frac{1}{R^{5}}\left(\sin 2 \delta-\frac{5 d t}{R^{2}}\right)$
x^{2} / R^{5}	$\frac{x}{R^{5}}\left(1+A_{5}\right)$	$-5 x^{2} y / R^{7}$	$5 x^{2} d / R^{7}$
y^{2} / R^{5}	$-5 x y^{2} / R^{7}$	$\frac{y}{R^{5}}\left(1+B_{5}\right)$	$5 y^{2} d / R^{7}$
d^{2} / R^{5}	$-5 x d^{2} / R^{7}$	$-5 y d^{2} / R^{7}$	$-\frac{d}{R^{5}}\left(1+C_{5}\right)$
$x y / R^{5}$	$\frac{y}{R^{5}} A_{5}$	$\frac{x}{R^{5}} B_{5}$	$5 x y d / R^{7}$
$x d / R^{5}$	$\frac{d}{R^{5}} A_{5}$	$-5 x y d / R^{7}$	$-\frac{x}{R^{5}} C_{5}$
$y d / R^{5}$	$-5 x y d / R^{7}$	$\frac{d}{R^{5}} B_{5}$	$-\frac{x}{R^{5}} C_{5}$
$x q / R^{5}$	$\frac{q}{R^{5}} A_{5}$	$\frac{x}{R^{5}}\left(\sin \delta-\frac{5 y q}{R^{2}}\right)=\frac{x}{R^{5}} U$	$\frac{x}{R^{5}}\left(\cos \delta+\frac{5 d q}{R^{2}}\right)=\frac{x}{R^{5}} U^{\prime}$
$p q / R^{5}$	$-5 x p q / R^{7}$	$\frac{1}{R^{5}}\left(s-\frac{5 y p q}{R^{2}}\right)=\frac{V}{R^{5}}$	$\frac{1}{R^{5}}\left(t+\frac{5 d p q}{R^{2}}\right)=\frac{V^{\prime}}{R^{5}}$
q^{2} / R^{5}	$-5 x q^{2} / R^{7}$	$\frac{q}{R^{5}}\left(2 \sin \delta-\frac{5 y q}{R^{2}}\right)=\frac{q}{R^{5}} W$	$\frac{q}{R^{5}}\left(2 \cos \delta+\frac{5 d q}{R^{2}}\right)=\frac{q}{R^{5}} W^{\prime}$
$x s / R^{5}$	$\frac{s}{R^{5}} A_{5}$	$\frac{x}{R^{5}}\left(\sin 2 \delta-\frac{5 y s}{R^{2}}\right)$	$\frac{x}{R^{5}}\left(\cos 2 \delta+\frac{5 d s}{R^{2}}\right)$
$x t / R^{5}$	$\frac{t}{R^{5}} A_{5}$	$\frac{x}{R^{5}}\left(\cos 2 \delta-\frac{5 y t}{R^{2}}\right)$	$-\frac{x}{R^{5}}\left(\sin 2 \delta-\frac{5 d t}{R^{2}}\right)$
$y s / R^{5}$	-5xys/R ${ }^{7}$	$\frac{1}{R^{5}}\left(y \sin 2 \delta+s B_{5}\right)$	$\frac{y}{R^{5}}\left(\cos 2 \delta+\frac{5 d s}{R^{2}}\right)$
$y t / R^{5}$	$-5 x y t / R^{7}$	$\frac{1}{R^{5}}\left(y \cos 2 \delta+t B_{5}\right)$	$-\frac{y}{R^{5}}\left(\sin 2 \delta-\frac{5 d t}{R^{2}}\right)$
$x z / R^{5}$	$\frac{Z}{R^{5}} A_{5}$	$-5 x y z / R^{7}$	$\frac{x}{R^{5}}\left(1+\frac{5 d z}{R^{2}}\right)$
$y z / R^{5}$	$-5 x y z / R^{7}$	$\frac{Z}{R^{5}} B_{5}$	$\frac{y}{R^{5}}\left(1+\frac{5 d z}{R^{2}}\right)$
$d z / R^{5}$	$-5 x d z / R^{7}$	$-5 y d z / R^{7}$	$\frac{1}{R^{5}}\left(d-z C_{5}\right)$

f	$\partial f / \partial x$	$\partial f / \partial y$	$\partial f / \partial z=-\partial f / \partial d$
$x^{2} q / R^{5}$	$\frac{x q}{R^{5}}\left(1+A_{5}\right)$	$\frac{x^{2}}{R^{5}}\left(\sin \delta-\frac{5 y q}{R^{2}}\right)=\frac{x^{2}}{R^{5}} U$	$\frac{x^{2}}{R^{5}}\left(\cos \delta+\frac{5 d q}{R^{2}}\right)=\frac{x^{2}}{R^{5}} U^{\prime}$
$x y q / R^{5}$	$\frac{y q}{R^{5}} A_{5}$	$\frac{x}{R^{5}}\left(y \sin \delta+q B_{5}\right)=\frac{x y}{R^{5}} U+\frac{x q}{R^{5}}$	$\frac{x y}{R^{5}}\left(\cos \delta+\frac{5 d q}{R^{2}}\right)=\frac{x y}{R^{5}} U^{\prime}$
$x d q / R^{5}$	$\frac{d q}{R^{5}} A_{5}$	$\frac{x d}{R^{5}}\left(\sin \delta-\frac{5 y q}{R^{2}}\right)=\frac{x d}{R^{5}} U$	$\frac{x}{R^{5}}\left(d \cos \delta-q C_{5}\right)=\frac{x d}{R^{5}} U^{\prime}-\frac{x q}{R^{5}}$
$x p q / R^{5}$	$\frac{p q}{R^{5}} A_{5}$	$\frac{x}{R^{5}}\left(s-\frac{5 y p q}{R^{2}}\right)=\frac{x}{R^{5}} V$	$\frac{x}{R^{5}}\left(t+\frac{5 d p q}{R^{2}}\right)=\frac{x}{R^{5}} V^{\prime}$
$y p q / R^{5}$	$-5 x y p q / R^{7}$	$\frac{1}{R^{5}}\left(y s+p q B_{5}\right)=\frac{y}{R^{5}} V+\frac{p q}{R^{5}}$	$\frac{y}{R^{5}}\left(t+\frac{5 d p q}{R^{2}}\right)=\frac{y}{R^{5}} V^{\prime}$
$d p q / R^{5}$	$-5 x d p q / R^{7}$	$\frac{d}{R^{5}}\left(s-\frac{5 y p q}{R^{2}}\right)=\frac{d}{R^{5}} V$	$\frac{1}{R^{5}}\left(d t-p q C_{5}\right)=\frac{d}{R^{5}} V^{\prime}-\frac{p q}{R^{5}}$
$x q^{2} / R^{5}$	$\frac{q^{2}}{R^{5}} A_{5}$	$\frac{x q}{R^{5}}\left(2 \sin \delta-\frac{5 y q}{R^{2}}\right)=\frac{x q}{R^{5}} W$	$\frac{x q}{R^{5}}\left(2 \cos \delta+\frac{5 d q}{R^{2}}\right)=\frac{x q}{R^{5}} W^{\prime}$
$y q^{2} / R^{5}$	$-5 x y q^{2} / R^{7}$	$\frac{q}{R^{5}}\left(2 y \sin \delta+q B_{5}\right)=\frac{y q}{R^{5}} W+\frac{q^{2}}{R^{5}}$	$\frac{y q}{R^{5}}\left(2 \cos \delta+\frac{5 d q}{R^{2}}\right)=\frac{y q}{R^{5}} W^{\prime}$
$d q^{2} / R^{5}$	$-5 x d q^{2} / R^{7}$	$\frac{d q}{R^{5}}\left(2 \sin \delta-\frac{5 y q}{R^{2}}\right)=\frac{x q}{R^{5}} W$	$\frac{q}{R^{5}}\left(2 d \cos \delta-q C_{5}\right)=\frac{d q}{R^{5}} W^{\prime}-\frac{q^{2}}{R^{5}}$
$x^{2} q / R^{7}$	$\frac{x q}{R^{7}}\left(1+A_{7}\right)$	$\frac{x^{2}}{R^{7}}\left(\sin \delta-\frac{7 y q}{R^{2}}\right)$	$\frac{x^{2}}{R^{7}}\left(\cos \delta+\frac{7 d q}{R^{2}}\right)$
$x y q / R^{7}$	$\frac{y q}{R^{7}} A_{7}$	$\frac{x}{R^{7}}\left(y \sin \delta+q B_{7}\right)$	$\frac{x y}{R^{7}}\left(\cos \delta+\frac{7 d q}{R^{2}}\right)$
$x d q / R^{7}$	$\frac{d q}{R^{7}} A_{7}$	$\frac{x d}{R^{7}}\left(\sin \delta-\frac{7 y q}{R^{2}}\right)$	$\frac{x}{R^{7}}\left(d \cos \delta-q C_{7}\right)$
$x p q / R^{7}$	$\frac{p q}{R^{7}} A_{7}$	$\frac{x}{R^{7}}\left(s-\frac{7 y p q}{R^{2}}\right)$	$\frac{x}{R^{7}}\left(t+\frac{7 d p q}{R^{2}}\right)$
$y p q / R^{7}$	-7xypq/ R^{9}	$\frac{1}{R^{7}}\left(y s+p q B_{7}\right)$	$\frac{y}{R^{7}}\left(t+\frac{7 d p q}{R^{2}}\right)$
$d p q / R^{7}$	$-7 x d p q / R^{9}$	$\frac{d}{R^{7}}\left(s-\frac{7 y p q}{R^{2}}\right)$	$\frac{1}{R^{7}}\left(d t-p q C_{7}\right)$
$x q^{2} / R^{7}$	$\frac{q^{2}}{R^{7}} A_{7}$	$\frac{x q}{R^{7}}\left(2 \sin \delta-\frac{7 y q}{R^{2}}\right)$	$\frac{x q}{R^{7}}\left(2 \cos \delta+\frac{7 d q}{R^{2}}\right)$
$y q^{2} / R^{7}$	$-7 x y q^{2} / R^{9}$	$\frac{q}{R^{7}}\left(2 y \sin \delta+q B_{7}\right)$	$\frac{y q}{R^{7}}\left(2 \cos \delta+\frac{7 d q}{R^{2}}\right)$
$d q^{2} / R^{7}$	$-7 x d q^{2} / R^{9}$	$\frac{d q}{R^{7}}\left(2 \sin \delta-\frac{7 y q}{R^{2}}\right)$	$\frac{q}{R^{7}}\left(2 d \cos \delta-q C_{7}\right)$
$\frac{1}{R(R+d)}$	$-x \frac{2 R+d}{R^{3}(R+d)^{2}}$	$-y \frac{2 R+d}{R^{3}(R+d)^{2}}$	$\frac{1}{R^{3}}$
$\frac{1}{R(R+d)^{2}}$	$-x \frac{3 R+d}{R^{3}(R+d)^{3}}$	$-y \frac{3 R+d}{R^{3}(R+d)^{3}}$	$\frac{2 R+d}{R^{3}(R+d)^{2}}$
$\frac{2 R+d}{R^{3}(R+d)^{2}}$	$-x \frac{8 R^{2}+9 R d+3 d^{2}}{R^{5}(R+d)^{3}}$	$-y \frac{8 R^{2}+9 R d+3 d^{2}}{R^{5}(R+d)^{3}}$	$\frac{3}{R^{5}}$
$\frac{3 R+d}{R^{3}(R+d)^{3}}$	$-3 x \frac{5 R^{2}+4 R d+d^{2}}{R^{5}(R+d)^{4}}$	$-3 y \frac{5 R^{2}+4 R d+d^{2}}{R^{5}(R+d)^{4}}$	$\frac{8 R^{2}+9 R d+3 d^{2}}{R^{5}(R+d)^{3}}$

$A_{3}=1-\frac{3 x^{2}}{R^{2}} \quad B_{3}=1-\frac{3 y^{2}}{R^{2}} \quad C_{3}=1-\frac{3 d^{2}}{R^{2}} \quad U=\sin \delta-\frac{5 y q}{R^{2}} \quad U^{\prime}=\cos \delta+\frac{5 d q}{R^{2}}$
$A_{5}=1-\frac{5 x^{2}}{R^{2}} \quad B_{5}=1-\frac{5 y^{2}}{R^{2}} \quad C_{5}=1-\frac{5 d^{2}}{R^{2}} \quad V=s-\frac{5 y p q}{R^{2}} \quad V^{\prime}=t+\frac{5 d p q}{R^{2}}$
$A_{7}=1-\frac{7 x^{2}}{R^{2}} \quad B_{7}=1-\frac{7 y^{2}}{R^{2}} \quad C_{7}=1-\frac{7 d^{2}}{R^{2}} \quad W=2 \sin \delta-\frac{5 y q}{R^{2}} \quad W^{\prime}=2 \cos \delta+\frac{5 d q}{R^{2}}$

