Derivation of Table 6 in Okada (1992)

[I] Integration for a finite rectangular source

Point source solutions given in Tables 2 through 5 have the form of $u^{0}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\frac{M o}{2 \pi \mu}[\cdots \cdots \cdots]$.
For a finite fault with a dislocation U, we can replace M_{0} to $\mu U \iint_{\Sigma}[\cdots \cdots \cdots] d \Sigma$ using the concept of body force equivalents. This operation yields the finite fault solution in the form of $u(x, y, z)=\frac{U}{2 \pi} \iint_{\Sigma}[\cdots \cdots \cdots] d \Sigma$.

To get finite fault solutions, we need double integration with ($\xi^{\prime}, \eta^{\prime}$) after replacing the location of point source from $(0,0,-c)$ to ($\left.\xi^{\prime}, \eta^{\prime} \cos \delta,-c+\eta^{\prime} \sin \delta\right)$.

Namely, after changing

$$
\left\{\begin{array}{l}
x \rightarrow x-\xi^{\prime} \\
y \rightarrow y-\eta^{\prime} \cos \delta \\
c \rightarrow c-\eta^{\prime} \sin \delta
\end{array}\right.
$$

in the point source solution, we need an operation

$$
\int_{0}^{L} d \xi^{\prime} \int_{0}^{W} d \eta^{\prime}
$$

Here, for the sake of convenience, we change the integration variables from $\left(\xi^{\prime}, \eta^{\prime}\right)$ to $\left\{\begin{array}{l}\xi=x-\xi^{\prime} \\ \eta=p-\eta^{\prime}\end{array}\right.$

Then, we should change the variables in the point source solution to

$$
\begin{aligned}
& \left\{\begin{array}{l}
x \rightarrow \xi \\
y \rightarrow \tilde{y}=y-(p-\eta) \cos \delta=\eta \cos \delta+q \sin \delta \\
d \rightarrow \tilde{d}=d-(p-\eta) \sin \delta=\eta \sin \delta-q \cos \delta \\
c \rightarrow \tilde{c}=\tilde{d}+z=\eta \sin \delta-h \quad(h=q \cos \delta-z)
\end{array}\right. \\
& R^{2}=\xi^{2}+\eta^{2}+q^{2}=\xi^{2}+\tilde{y}^{2}+\tilde{d}^{2}
\end{aligned}
$$

and perform the integration

$$
\int_{x}^{x-L} d \xi \int_{p}^{p-W} d \eta
$$

where $\left\{\begin{array}{l}p=y \cos \delta+d \sin \delta \\ q=y \sin \delta-d \cos \delta\end{array}, \quad d=c-z\right.$

In the following, for the sake of simplicity, we will treat the displacement $\left(u_{1}, u_{2}, u_{3}\right)$ instead of $\left(u_{x}, u_{y}, u_{z}\right)$
For A - and B-parts of the displacement $\left\{\begin{array}{l}u_{1}=u_{x} \\ u_{2}=u_{y} \cos \delta+u_{z} \sin \delta \\ u_{3}=-u_{y} \sin \delta+u_{z} \cos \delta\end{array}\right.$
and for the C-part of the displacement $\left\{\begin{array}{l}u_{1}=u_{x} \\ u_{2}=u_{y} \cos \delta-u_{z} \sin \delta \\ u_{3}=-u_{y} \sin \delta-u_{z} \cos \delta\end{array}\right.$
The former u_{2} corresponds to the displacement parallel to up-dip direction of the real fault, while the latter u_{2} corresponds to that of the imaginary fault.

for parts A and B

for part C

(1) Strike slip

Displacement due to a point strike-slip at $(0,0,-c)$ are given in Table 2 as follows.

$$
\begin{aligned}
& u_{A}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{l}
u_{x}=\frac{1-\alpha}{2} \frac{q}{R^{3}} \quad+\frac{\alpha}{2} \frac{3 x^{2} q}{R^{5}} \\
u_{y}=\frac{1-\alpha}{2} \frac{x}{R^{3}} \sin \delta+\frac{\alpha}{2} \frac{3 x y q}{R^{5}} \\
u_{z}=-\frac{1-\alpha}{2} \frac{x}{R^{3}} \cos \delta+\frac{\alpha}{2} \frac{3 x d q}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{l}
u_{x}=-\frac{3 x^{2} q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{1}^{0} \sin \delta \\
u_{y}=-\frac{3 x y q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{2}^{0} \sin \delta \\
u_{z}=-\frac{3 x d q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{4}^{0} \sin \delta
\end{array}\right) \\
& u_{C}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{l}
u_{x}=-(1-\alpha) \frac{A_{3}}{R^{3}} \cos \delta+\alpha \frac{3 c q}{R^{5}} A_{5} \\
u_{y}=(1-\alpha) \frac{3 x y}{R^{5}} \cos \delta+\alpha \frac{3 c x}{R^{5}}\left(\sin \delta-\frac{5 y q}{R^{2}}\right) \\
u_{z}=-(1-\alpha) \frac{3 x y}{R^{5}} \sin \delta+\alpha \frac{3 c x}{R^{5}}\left(\cos \delta+\frac{5 d q}{R(R+d)^{2}}-x^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right)-\frac{3 x q}{R^{5}}
\end{array}\right) \\
& I_{2}^{0}=x\left[\frac{1}{R(R+d)^{2}}-y^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \\
& I_{4}^{0}=-x y \frac{2 R+d}{R^{3}(R+d)^{2}}
\end{aligned}
$$

where, $\quad d=c-z, q=y \sin \delta-d \cos \delta, R^{2}=x^{2}+y^{2}+d^{2}$
Here, for the sake of simplicity, the term $-\frac{3 c x q}{R^{5}}$ in the z-component of u_{B}^{o} was restored to $-\frac{3 x d q}{R^{5}}$ and the term $-\frac{3 x q}{R^{5}}$ was added to the z-component of u_{C}^{o} (see "Derivation of Table 2").

If we convert the displacement $\left(u_{x}, u_{y}, u_{z}\right)$ to $\left(u_{1}, u_{2}, u_{3}\right)$,

$$
\begin{aligned}
& u_{A}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{rr}
u_{1}= & \frac{1-\alpha}{2} \frac{q}{R^{3}}+\frac{\alpha}{2} \frac{3 x^{2} q}{R^{5}} \\
u_{2}= & \frac{\alpha}{2} \frac{3 x p q}{R^{5}} \\
u_{3}= & -\frac{1-\alpha}{2} \frac{x}{R^{3}}-\frac{\alpha}{2} \frac{3 x q^{2}}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{l}
u_{1}=-\frac{3 x^{2} q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{1}^{0} \sin \delta \\
u_{2}=-\frac{3 x p q}{R^{5}}-\frac{1-\alpha}{\alpha}\left(I_{2}^{0} \cos \delta+I_{4}^{0} \sin \delta\right) \sin \delta \\
u_{3}=\frac{3 x q^{2}}{R^{5}}+\frac{1-\alpha}{\alpha}\left(I_{2}^{0} \sin \delta-I_{4}^{0} \cos \delta\right) \sin \delta
\end{array}\right) \\
& u_{C}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{ll}
u_{1}= & -(1-\alpha) \frac{A_{3}}{R^{3}} \cos \delta+\alpha \frac{3 c q}{R^{5}} A_{5} \\
u_{2}= & (1-\alpha) \frac{3 x y}{R^{5}} \\
u_{3}= & -\alpha \frac{15 c x p q}{R^{7}}+\frac{3 x q}{R^{5}} \sin \delta \\
u^{2} & -\alpha \frac{3 c x}{R^{5}}\left(1-\frac{5 q^{2}}{R^{2}}\right)+\frac{3 x q}{R^{5}} \cos \delta
\end{array}\right) \\
& \text { For the integration, we substitute }\left\{\begin{array}{lll}
x \rightarrow \xi \\
y & \rightarrow \tilde{y}=\eta \cos \delta+q \sin \delta \\
d & \rightarrow \tilde{d}=\eta \sin \delta-q \cos \delta & R^{2}=\xi^{2}+\eta^{2}+q^{2}=\xi^{2}+\tilde{y}^{2}+\tilde{d}^{2} \\
c \rightarrow \tilde{c}=\tilde{d}+z=\eta \sin \delta-h & h=q \cos \delta-z \\
p \rightarrow \eta \\
q \rightarrow q &
\end{array}\right.
\end{aligned}
$$

So, integrand becomes
$u_{A}^{o}=\left(\begin{array}{rr}u_{1}= & \frac{1-\alpha}{2} \frac{q}{R^{3}}+\frac{\alpha}{2} \frac{3 \xi^{2} q}{R^{5}} \\ u_{2}= & \frac{\alpha}{2} \frac{3 \xi \eta q}{R^{5}} \\ u_{3}= & -\frac{1-\alpha}{2} \frac{\xi}{R^{3}}-\frac{\alpha}{2} \frac{3 \xi q^{2}}{R^{5}}\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{l}u_{1}=-\frac{3 \xi^{2} q}{R^{5}}-\frac{1-\alpha}{\alpha} I_{1}^{0} \sin \delta \\ u_{2}=-\frac{3 \xi \eta q}{R^{5}}-\frac{1-\alpha}{\alpha}\left(I_{2}^{0} \cos \delta+I_{4}^{0} \sin \delta\right) \sin \delta \\ u_{3}= \\ \frac{3 \xi q^{2}}{R^{5}}+\frac{1-\alpha}{\alpha}\left(I_{2}^{0} \sin \delta-I_{4}^{0} \cos \delta\right) \sin \delta\end{array}\right)$
$\left.u_{C}^{o}=\left(\begin{array}{rl}u_{1}=-(1-\alpha)\left(\frac{1}{R^{3}}-\frac{3 \xi^{2}}{R^{5}}\right) \cos \delta \quad+\alpha q(\eta \sin \delta-h)\left(\frac{3}{R^{5}}-\frac{15 \xi^{2}}{R^{7}}\right) \\ u_{2}=(1-\alpha)(\eta \cos \delta+q \sin \delta) \frac{3 \xi}{R^{5}}-\alpha q(\eta \sin \delta-h) \frac{15 \xi \eta}{R^{7}}+\frac{3 \xi q}{R^{5}} \sin \delta \\ u_{3}=r\end{array}\right) \quad \begin{array}{ll}I_{1}^{0}=\tilde{y}\left[\frac{1}{R(R+\tilde{d})^{2}}-\xi^{2} \frac{3 R+\tilde{d}}{R^{3}(R+\tilde{d})^{3}}\right] \\ -\alpha(\eta \sin \delta-h)\left(\frac{3 \xi}{R^{5}}-\frac{15 \xi q^{2}}{R^{7}}\right)+\frac{3 \xi q}{R^{5}} \cos \delta\end{array}\right) \quad \begin{aligned} & I_{2}^{0}=\xi\left[\frac{1}{R(R+\tilde{d})^{2}}-\tilde{y}^{2} \frac{3 R+\tilde{d}}{R^{3}(R+\tilde{d})^{3}}\right] \\ & I_{4}^{0}=-\xi \tilde{y} \frac{2 R+\tilde{d}}{R^{3}(R+\tilde{d})^{2}}\end{aligned}$
At first, let us integrate with ξ (refer Appendix: Table of Integration)
$\int u_{A}^{o} d \xi=\left(\begin{array}{lr}u_{1}= & -\frac{q}{2} X_{11}-\frac{\alpha}{2} \frac{\xi q}{R^{3}} \\ u_{2}= & -\frac{\alpha}{2} \frac{\eta q}{R^{3}} \\ u_{3}= & \frac{1-\alpha}{2} \frac{1}{R}+\frac{\alpha}{2} \frac{q^{2}}{R^{3}}\end{array}\right) \quad \int u_{B}^{o} d \xi=\left(\begin{array}{ll}u_{1}=\frac{\xi q}{R^{3}}+q X_{11}-\frac{1-\alpha}{\alpha} \int I_{1}^{0} d \xi \sin \delta \\ u_{2}=\frac{\eta q}{R^{3}} & -\frac{1-\alpha}{\alpha} \int\left(I_{2}^{0} \cos \delta+I_{4}^{0} \sin \delta\right) d \xi \sin \delta \\ u_{3}=-\frac{q^{2}}{R^{3}} & +\frac{1-\alpha}{\alpha} \int\left(I_{2}^{0} \sin \delta-I_{4}^{0} \cos \delta\right) d \xi \sin \delta\end{array}\right)$
$\int u_{C}^{o} d \xi=\left(\begin{array}{l}u_{1}=-(1-\alpha) \frac{\xi}{R^{3}} \cos \delta \quad+3 \alpha \xi q \frac{\eta \sin \delta-h}{R^{5}} \\ u_{2}=-(1-\alpha) \frac{\eta \cos \delta+q \sin \delta}{R^{3}}+3 \alpha \eta q \frac{\eta \sin \delta-h}{R^{5}}-\frac{q}{R^{3}} \sin \delta \\ u_{3}=\quad \alpha(\eta \sin \delta-h)\left(\frac{1}{R^{3}}-\frac{3 q^{2}}{R^{5}}\right)-\frac{q}{R^{3}} \cos \delta\end{array}\right) \quad X_{11}=\frac{1}{R(R+\xi)}$
Next, let us integrate with η (refer Appendix : Table of Integration)

$$
\begin{aligned}
& \iint u_{A}^{o} d \xi d \eta=\left(\begin{array}{lc}
u_{1}=\frac{\theta}{2} & +\frac{\alpha}{2} \xi q Y_{11} \\
u_{2}= & \frac{\alpha}{2} \frac{q}{R} \\
u_{3}=\frac{1-\alpha}{2} \ln (R+\eta)-\frac{\alpha}{2} q^{2} Y_{11}
\end{array}\right) \quad \iint u_{B}^{o} d \xi d \eta=\left(\begin{array}{ll}
u_{1}=-\xi q Y_{11}-\theta & -\frac{1-\alpha}{\alpha} \iint I_{1}^{0} d \xi d \eta \sin \delta \\
u_{2}=-\frac{q}{R}+\frac{1-\alpha}{\alpha} \iint\left(-I_{2}^{0} \cos \delta-I_{4}^{0} \sin \delta\right) d \xi d \eta \sin \delta \\
u_{3}=q^{2} Y_{11}-\frac{1-\alpha}{\alpha} \iint\left(-I_{2}^{0} \sin \delta+I_{4}^{0} \cos \delta\right) d \xi d \eta \sin \delta
\end{array}\right) \\
& \iint u_{c}^{o} d \xi d \eta=\left(\begin{array}{ll}
u_{1}=(1-\alpha) \xi Y_{11} \cos \delta & -\alpha \xi q\left(\frac{\sin \delta}{R^{3}}-h Y_{32}\right) \\
u_{2}=(1-\alpha)\left(\frac{\cos \delta}{R}+q Y_{11} \sin \delta\right)-\alpha q\left[\left(\frac{\eta}{R^{3}}+Y_{11}\right) \sin \delta-\frac{h}{R^{3}}\right]+q Y_{11} \sin \delta \\
u_{3}= & -\alpha\left[\left(\frac{1}{R}-\frac{q^{2}}{R^{3}}\right) \sin \delta-h\left(Y_{11}-q^{2} Y_{32}\right)\right]+q Y_{11} \cos \delta
\end{array}\right) \quad \begin{array}{l}
\theta=\tan ^{-1} \frac{\xi \eta}{q R} \\
Y_{11}=\frac{1}{R(R+\eta)} \\
Y_{32}=\frac{2 R+\eta}{R^{3}(R+\eta)^{2}} \\
Z_{32}=\frac{\sin \delta}{R^{3}}-h Y_{32}
\end{array}
\end{aligned}
$$

Here,

$$
\left(\frac{\eta}{R^{3}}+Y_{11}\right) \sin \delta-\frac{h}{R^{3}}=Y_{11} \sin \delta+\frac{\eta \sin \delta-h}{R^{3}}=Y_{11} \sin \delta-\frac{\tilde{c}}{R^{3}} \rightarrow u_{2}^{c}=(1-\alpha)\left(\frac{\cos \delta}{R}+2 q Y_{11} \sin \delta\right)-\alpha \frac{\tilde{c} q}{R^{3}}
$$

and

$$
\begin{aligned}
& \left(\frac{1}{R}-\frac{q^{2}}{R^{3}}\right) \sin \delta-h\left(Y_{11}-q^{2} Y_{32}\right)=\frac{\xi^{2}+\eta^{2}}{R^{3}} \sin \delta+h\left(Y_{11}-\xi^{2} Y_{32}-\frac{\eta}{R^{3}}\right)=\xi^{2}\left(\frac{\sin \delta}{R^{3}}-h Y_{32}\right)+\frac{\eta(\eta \sin \delta-h)}{R^{3}}+h Y_{11} \\
& \quad=\xi^{2} Z_{32}+\frac{\tilde{q} \eta}{R^{3}}+(q \cos \delta-z) Y_{11} \quad \rightarrow \quad u_{3}^{c}=(1-\alpha) q Y_{11} \cos \delta-\alpha\left(\frac{\tilde{q} \eta}{R^{3}}-z Y_{11}+\xi^{2} Z_{32}\right)
\end{aligned}
$$

The above three vectors correspond to the contents of the row of Strike-slip in Table 6.
(Evaluation of $\iint I_{1}^{0} d \xi d \eta$ et al. will be done in the later section)

(2) Dip slip

Displacement due to a point dip-slip at $(0,0,-c)$ are given in Table 2 as follows.

$$
\begin{aligned}
& u_{A}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{lr}
u_{x}=r & \frac{\alpha}{2} \frac{3 x p q}{R^{5}} \\
u_{y}= & \frac{1-\alpha}{2} \frac{\alpha}{R^{3}}+\frac{\alpha}{2} \frac{3 y p q}{R^{5}} \\
u_{z}=-\frac{1-\alpha}{2} \frac{t}{R^{3}}+\frac{\alpha}{2} \frac{3 d p q}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{l}
u_{x}=-\frac{3 x p q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{3}^{0} \sin \delta \cos \delta \\
u_{y}=-\frac{3 y p q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{1}^{0} \sin \delta \cos \delta \\
u_{z}=-\frac{3 d p q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{5}^{0} \sin \delta \cos \delta
\end{array}\right) \\
& u_{C}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{ll}
u_{x}=(1-\alpha) \frac{3 x t}{R^{5}} & -\alpha \frac{15 c x p q}{R^{7}} \\
u_{y}=-(1-\alpha) \frac{1}{R^{3}}\left(\cos 2 \delta-\frac{3 y t}{R^{2}}\right)+\alpha \frac{3 c}{R^{5}}\left(s-\frac{5 y p q}{R^{2}}\right) \\
u_{z}=-(1-\alpha) \frac{A_{3}}{R^{3}} \sin \delta \cos \delta & +\alpha \frac{3 c}{R^{5}}\left(t+\frac{5 d p}{R^{2}}\right)-\frac{3 p q}{R^{5}}
\end{array}\right) \\
& \begin{array}{l}
I_{1}^{0}=y\left[\frac{1}{R(R+d)^{2}}-x^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \\
I_{2}^{0}=x\left[\frac{1}{R(R+d)^{2}}-y^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \\
I_{3}^{0}=\frac{x}{R^{3}}-I_{2}^{0} \\
I_{5}^{0}=\frac{1}{R(R+d)}-x^{2} \frac{2 R+d}{R^{3}(R+d)^{2}}
\end{array}
\end{aligned}
$$

where, $A_{3}=1-\frac{3 x^{2}}{R^{2}}, \quad d=c-z,\left\{\begin{array}{l}p=y \cos \delta+d \sin \delta \\ q=y \sin \delta-d \cos \delta\end{array}, \quad p q=\frac{y^{2}-d^{2}}{2} \sin 2 \delta-y d \cos 2 \delta\right.$

$$
\left\{\begin{array}{l}
s=p \sin \delta+q \cos \delta=y \sin 2 \delta-d \cos 2 \delta \\
t=p \cos \delta-q \sin \delta=y \cos 2 \delta+d \sin 2 \delta
\end{array}, \quad R^{2}=x^{2}+y^{2}+d^{2}=x^{2}+p^{2}+q^{2}=x^{2}+s^{2}+t^{2}\right.
$$

Here, for the sake of simplicity, the term $-\frac{3 c p q}{R^{5}}$ in the z-component of u_{B}^{o} was restored to $-\frac{3 d p q}{R^{5}}$ and the term $-\frac{3 p q}{R^{5}}$ was added to the z-component of u_{C}^{o} (see "Derivation of Table 2 ").

If we convert the displacement $\left(u_{x}, u_{y}, u_{z}\right)$ to $\left(u_{1}, u_{2}, u_{3}\right)$,

$$
\left.\begin{array}{l}
u_{A}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{lr}
u_{1}= & \frac{\alpha}{2} \frac{3 x p q}{R^{5}} \\
u_{2}= & \frac{1-\alpha}{2} \frac{q}{R^{3}}+\frac{\alpha}{2} \frac{3 p^{2} q}{R^{5}} \\
u_{3}=-\frac{1-\alpha}{2} \frac{p}{R^{3}}-\frac{\alpha}{2} \frac{3 p q^{2}}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{l}
u_{1}=-\frac{3 x p q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{3}^{0} \sin \delta \cos \delta \\
u_{2}=-\frac{3 p^{2} q}{R^{5}}+\frac{1-\alpha}{\alpha}\left(I_{1}^{0} \cos \delta+I_{5}^{0} \sin \delta\right) \sin \delta \cos \delta \\
u_{3}=\frac{3 p q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha}\left(I_{1}^{0} \sin \delta-I_{5}^{0} \cos \delta\right) \sin \delta \cos \delta
\end{array}\right) \\
\left.u_{C}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{l}
u_{1}= \\
u_{2}=-(1-\alpha) \frac{3 x t}{R^{5}} \\
u_{3}= \\
(1-\alpha) \frac{\cos \delta}{R^{3}}\left(\cos 2 \delta-\frac{35 c x p q}{R^{7}}\right.
\end{array}\right) \frac{3 y t}{R^{2}}-A_{3} \sin ^{2} \delta\right)+\alpha \frac{3 c}{R^{5}}\left(q-\frac{5 p^{2} q}{R^{2}}\right)+\frac{3 p q}{R^{5}} \sin \delta \\
\left.\cos 2 \delta-\frac{3 y t}{R^{2}}+A_{3} \cos ^{2} \delta\right)-\alpha \frac{3 c}{R^{5}}\left(p-\frac{5 p q^{2}}{R^{2}}\right)+\frac{3 p q}{R^{5}} \cos \delta
\end{array}\right) .
$$

Here, since $=p^{2} \cos ^{2} \delta-q^{2} \sin ^{2} \delta$,

$$
\begin{aligned}
& \cos 2 \delta-\frac{3 y t}{R^{2}}-A_{3} \sin ^{2} \delta=\cos 2 \delta-\sin ^{2} \delta-\frac{3\left(p^{2} \cos ^{2} \delta-q^{2} \sin ^{2} \delta-x^{2} \sin ^{2} \delta\right)}{R^{2}}=\cos 2 \delta+2 \sin ^{2} \delta-\frac{3 p^{2}}{R^{2}}=1-\frac{3 p^{2}}{R^{2}} \\
& \cos 2 \delta-\frac{3 y t}{R^{2}}+A_{3} \cos ^{2} \delta=\cos 2 \delta+\cos ^{2} \delta-\frac{3\left(p^{2} \cos ^{2} \delta-q^{2} \sin ^{2} \delta+x^{2} \cos ^{2} \delta\right)}{R^{2}}=\cos 2 \delta-2 \cos ^{2} \delta+\frac{3 q^{2}}{R^{2}}=-1+\frac{3 q^{2}}{R^{2}}
\end{aligned}
$$

For the integration, we substitute $\left\{\begin{array}{lll}x \rightarrow \xi & \\ y \rightarrow \tilde{y}=\eta \cos \delta+q \sin \delta \\ d \rightarrow \tilde{d}=\eta \sin \delta-q \cos \delta & R^{2}=\xi^{2}+\eta^{2}+q^{2}=\xi^{2}+\tilde{y}^{2}+\tilde{d}^{2} \\ c \rightarrow \tilde{c}=\tilde{d}+z=\eta \sin \delta-h & h=q \cos \delta-z \\ p \rightarrow \eta \\ q \rightarrow q & \end{array}\right.$
So, integrand becomes

$$
u_{A}^{o}=\left(\begin{array}{lr}
u_{1}= & \frac{\alpha}{2} \frac{3 \xi \eta q}{R^{5}} \\
u_{2}= & \frac{1-\alpha}{2} \frac{q}{R^{3}}+\frac{\alpha}{2} \frac{3 \eta^{2} q}{R^{5}} \\
u_{3}= & -\frac{1-\alpha}{2} \frac{\eta}{R^{3}}-\frac{\alpha}{2} \frac{3 \eta q^{2}}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{l}
u_{1}=-\frac{3 \xi \eta q}{R^{5}}+\frac{1-\alpha}{\alpha} I_{3}^{0} \sin \delta \cos \delta \\
u_{2}=-\frac{3 \eta^{2} q}{R^{5}}+\frac{1-\alpha}{\alpha}\left(I_{1}^{0} \cos \delta+I_{5}^{0} \sin \delta\right) \sin \delta \cos \delta \\
u_{3}= \\
\frac{3 \eta q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha}\left(I_{1}^{0} \sin \delta-I_{5}^{0} \cos \delta\right) \sin \delta \cos \delta
\end{array}\right)
$$

$$
u_{C}^{o}=\left(\begin{array}{ll}
u_{1}=(1-\alpha) \frac{3 \xi(\eta \cos \delta-q \sin \delta)}{R^{5}} & -15 \alpha \xi \eta q \frac{\eta \sin \delta-h}{R^{7}} \\
u_{2}=-(1-\alpha)\left(\frac{1}{R^{3}}-\frac{3 \eta^{2}}{R^{5}}\right) \cos \delta+\alpha q(\eta \sin \delta-h)\left(\frac{3}{R^{5}}-\frac{15 \eta^{2}}{R^{7}}\right)+\frac{3 \eta q}{R^{5}} \sin \delta \\
u_{3}=-(1-\alpha)\left(\frac{1}{R^{3}}-\frac{3 q^{2}}{R^{5}}\right) \sin \delta-\alpha \eta(\eta \sin \delta-h)\left(\frac{3}{R^{5}}-\frac{15 q^{2}}{R^{7}}\right)+\frac{3 \eta q}{R^{5}} \cos \delta
\end{array}\right) \quad \begin{aligned}
& I_{1}^{0}=\tilde{y}\left[\frac{1}{R(R+\tilde{d})^{2}}-\xi^{2} \frac{3 R+\tilde{d}}{R^{3}(R+\tilde{d})^{3}}\right] \\
& I_{2}^{0}=\xi\left[\frac{1}{R(R+\tilde{d})^{2}}-\tilde{y}^{2} \frac{3 R+\tilde{d}}{R^{3}(R+\tilde{d})^{3}}\right] \\
& I_{3}^{0}=\frac{\xi}{R^{3}}-I_{2}^{0} \\
& I_{5}^{0}=\frac{1}{R(R+\tilde{d})}-\xi^{2} \frac{2 R+\tilde{d}}{R^{3}(R+\tilde{d})^{2}}
\end{aligned}
$$

At first, let us integrate with ξ (refer Appendix: Table of Integration)

Next, let us integrate with η (refer Appendix : Table of Integration)

$$
\begin{aligned}
& \int u_{A}^{o} d \xi=\left(\begin{array}{lr}
u_{1}= & -\frac{\alpha}{2} \frac{\eta q}{R^{3}} \\
u_{2}= & -\frac{1-\alpha}{2} q X_{11}-\frac{\alpha}{2} \eta^{2} q X_{32} \\
u_{3}= & \frac{1-\alpha}{2} \eta X_{11}+\frac{\alpha}{2} \eta q^{2} X_{32}
\end{array}\right) \quad \int u_{B}^{o} d \xi=\left(\begin{array}{ll}
u_{1}=\frac{\eta q}{R^{3}} & +\frac{1-\alpha}{\alpha} \int I_{3}^{0} d \xi \sin \delta \cos \delta \\
u_{2}= & \eta^{2} q X_{32}+\frac{1-\alpha}{\alpha} \int\left(I_{1}^{0} \cos \delta+I_{5}^{0} \sin \delta\right) d \xi \sin \delta \cos \delta \\
u_{3}=-\eta q^{2} X_{32}-\frac{1-\alpha}{\alpha} \int\left(I_{1}^{0} \sin \delta-I_{5}^{0} \cos \delta\right) d \xi \sin \delta \cos \delta
\end{array}\right) \\
& \int u_{C}^{o} d \xi=\left(\begin{array}{l}
u_{1}=-(1-\alpha) \frac{\eta \cos \delta-q \sin \delta}{R^{3}}+3 \alpha \eta q \frac{\eta \sin \delta-h}{R^{5}} \\
u_{2}=(1-\alpha)\left(X_{11}-\eta^{2} X_{32}\right) \cos \delta-\alpha q(\eta \sin \delta-h)\left(X_{32}-\eta^{2} X_{53}\right)-\eta q X_{32} \sin \delta \\
u_{3}=(1-\alpha)\left(X_{11}-q^{2} X_{32}\right) \sin \delta+\alpha \eta(\eta \sin \delta-h)\left(X_{32}-q^{2} X_{53}\right)-\eta q X_{32} \cos \delta
\end{array}\right) \\
& X_{11}=\frac{1}{R(R+\xi)} \\
& X_{32}=\frac{2 R+\xi}{R^{3}(R+\xi)^{2}} \\
& X_{53}=\frac{8 R^{2}+9 R \xi+3 \xi^{2}}{R^{5}(R+\xi)^{3}}
\end{aligned}
$$

$$
\iint u_{C}^{o} d \xi d \eta=\left(\begin{array}{llll}
u_{1}= & (1-\alpha)\left(\frac{\cos \delta}{R}-q Y_{11} \sin \delta\right)-\alpha q\left(\frac{\eta \sin \delta-h}{R^{3}}+Y_{11} \sin \delta\right) & \\
u_{2}= & (1-\alpha) \eta X_{11} \cos \delta & -\alpha q\left(X_{11}+\eta^{2} X_{32}\right) \sin \delta & +\alpha q h \eta X_{32} \\
u_{3}=-(1-\alpha)\left(\eta X_{11}+\xi Y_{11}\right) \sin \delta-\alpha\left(2 \eta X_{11}+\xi Y_{11}-\eta q^{2} X_{32}\right) \sin \delta+\alpha h\left(X_{11}-q^{2} X_{32}\right)+q X_{11} \sin \delta \\
x_{11} \cos \delta
\end{array}\right) \quad \Theta=\tan ^{-1} \frac{\xi \eta}{q R}
$$

Here,

$$
\begin{aligned}
& u_{1}^{c}=(1-\alpha)\left(\frac{\cos \delta}{R}-q Y_{11} \sin \delta\right)-\alpha q\left(\frac{\eta \sin \delta-h}{R^{3}}+Y_{11} \sin \delta\right)=(1-\alpha) \frac{\cos \delta}{R}-q Y_{11} \sin \delta-\alpha \frac{\tilde{c} q}{R^{3}} \\
& u_{2}^{c}=(1-\alpha)(\eta \cos \delta+q \sin \delta) X_{11}-\alpha \eta q(\eta \sin \delta-h) X_{32}=(1-\alpha) \tilde{y} X_{11}-\alpha \tilde{c} \eta q X_{32} \\
& u_{3}^{C}=-[\eta \sin \delta-q \cos \delta+\alpha(\eta \sin \delta-h)] X_{11}-\xi Y_{11} \sin \delta+\alpha q^{2}(\eta \sin \delta-h) X_{32}=-\tilde{d} X_{11}-\xi Y_{11} \sin \delta-\alpha \tilde{c}\left(X_{11}-q^{2} X_{32}\right)
\end{aligned}
$$

The above three vectors correspond to the contents of the row of Dip-slip in Table 6.
(Evaluation of $\iint I_{3}^{0} d \xi d \eta$ et al. will be done in the later section)

(3) Tensile

Displacement due to a point tensile fault at $(0,0,-c)$ are given in Table 2 as follows.

$$
\begin{aligned}
& u_{A}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{l}
u_{x}=\frac{1-\alpha}{2} \frac{x}{R^{3}}-\frac{\alpha}{2} \frac{3 x q^{2}}{R^{5}} \\
u_{y}=\frac{1-\alpha}{2} \frac{t}{R^{3}}-\frac{\alpha}{2} \frac{3 y q^{2}}{R^{5}} \\
u_{z}=\frac{1-\alpha}{2} \frac{s}{R^{3}}-\frac{\alpha}{2} \frac{3 d q^{2}}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{l}
u_{x}=\frac{3 x q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{3}^{0} \sin ^{2} \delta \\
u_{y}=\frac{3 y q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{1}^{0} \sin ^{2} \delta \\
u_{z}=\frac{3 d q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{5}^{0} \sin ^{2} \delta
\end{array}\right) \\
& u_{C}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{l}
u_{x}=-(1-\alpha) \frac{3 x s}{R^{5}} \\
u_{y}=(1-\alpha) \frac{1}{R^{3}}\left(\sin 2 \delta-\frac{3 y s}{R^{2}}\right)+\alpha \frac{3 c}{R^{5}}\left(t-y+\frac{5 c x q^{2}}{R^{7}}-\alpha \frac{3 x z}{R^{2}}\right)-\alpha \frac{3 y z}{R^{5}} \\
u_{z}=-(1-\alpha) \frac{1}{R^{3}}\left(1-A_{3} \sin ^{2} \delta\right)-\alpha \frac{3 c}{R^{5}}\left(s-d+\frac{5 d q^{2}}{R^{2}}\right)+\alpha \frac{3 d z}{R^{5}}+\frac{3 q^{2}}{R^{5}}
\end{array}\right) \\
& I_{1}^{0}=y\left[\frac{1}{R(R+d)^{2}}-x^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \\
& I_{2}^{0}=x\left[\frac{1}{R(R+d)^{2}}-y^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \\
& I_{3}^{0}=\frac{x}{R^{3}}-I_{2}^{0} \\
& I_{5}^{0}=\frac{1}{R(R+d)}-x^{2} \frac{2 R+d}{R^{3}(R+d)^{2}}
\end{aligned}
$$

where, $A_{3}=1-\frac{3 x^{2}}{R^{2}}, \quad d=c-z,\left\{\begin{array}{l}p=y \cos \delta+d \sin \delta \\ q=y \sin \delta-d \cos \delta\end{array}, \quad p q=\frac{y^{2}-d^{2}}{2} \sin 2 \delta-y d \cos 2 \delta\right.$

$$
\left\{\begin{array}{l}
s=p \sin \delta+q \cos \delta=y \sin 2 \delta-d \cos 2 \delta \\
t=p \cos \delta-q \sin \delta=y \cos 2 \delta+d \sin 2 \delta
\end{array}, \quad R^{2}=x^{2}+y^{2}+d^{2}=x^{2}+p^{2}+q^{2}=x^{2}+s^{2}+t^{2}\right.
$$

Here, for the sake of simplicity, the term $\frac{3 c q^{2}}{R^{5}}$ in the z-component of u_{B}^{o} was restored to $\frac{3 d q^{2}}{R^{5}}$ and the term $\frac{3 q^{2}}{R^{5}}$ was added to the z-component of u_{C}^{o} (see "Derivation of Table 2").

If we convert the displacement $\left(u_{x}, u_{y}, u_{z}\right)$ to $\left(u_{1}, u_{2}, u_{3}\right)$,

$$
\begin{aligned}
& u_{A}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{l}
u_{1}=\frac{1-\alpha}{2} \frac{x}{R^{3}}-\frac{\alpha}{2} \frac{3 x q^{2}}{R^{5}} \\
u_{2}=\frac{1-\alpha}{2} \frac{p}{R^{3}}-\frac{\alpha}{2} \frac{3 p q^{2}}{R^{5}} \\
u_{3}=\frac{1-\alpha}{2} \frac{q}{R^{3}}+\frac{\alpha}{2} \frac{3 q^{3}}{R^{5}}
\end{array}\right) \quad u_{B}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{l}
u_{1}=\frac{3 x q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{3}^{0} \sin ^{2} \delta \\
u_{2}=\frac{3 p q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha}\left(I_{1}^{0} \cos \delta+I_{5}^{0} \sin \delta\right) \sin ^{2} \delta \\
u_{3}=-\frac{3 q^{3}}{R^{5}}+\frac{1-\alpha}{\alpha}\left(I_{1}^{0} \sin \delta-I_{5}^{0} \cos \delta\right) \sin ^{2} \delta
\end{array}\right) \\
& u_{C}^{o}=\frac{M o}{2 \pi \mu}\left(\begin{array}{l}
u_{1}=-(1-\alpha) \frac{3 x s}{R^{5}} \\
u_{2}=(1-\alpha) \frac{1}{R^{3}}\left[\left(\sin 2 \delta-\frac{3 y s}{R^{2}}\right) \cos \delta+\left(1-A_{3} \sin ^{2} \delta\right) \sin \delta\right]+\alpha \frac{15 c p q^{2}}{R^{7}} \\
u_{3}=-(1-\alpha) \frac{1}{R^{3}}\left[\left(\sin 2 \delta-\frac{3 y s}{R^{2}}\right) \sin \delta-\left(1-A_{3} \sin ^{2} \delta\right) \cos \delta\right]+\alpha \frac{3 x z}{R^{5}} \\
R^{5}\left(2-\frac{3 c q}{R^{2}}\right)+\alpha \frac{3 q q^{2}}{R^{5}}-\frac{3 q^{2}}{R^{5}} \cos \delta
\end{array}\right)
\end{aligned}
$$

Here, since $=\left(p^{2}+q^{2}\right) \sin \delta \cos \delta+p q$,

$$
\begin{aligned}
& \left(\sin 2 \delta-\frac{3 y s}{R^{2}}\right) \cos \delta+\left(1-A_{3} \sin ^{2} \delta\right) \sin \delta=2 \sin \delta \cos ^{2} \delta-\frac{3\left(p^{2}+q^{2}\right) \sin \delta \cos ^{2} \delta-3 x^{2} \sin ^{3} \delta}{R^{2}}-\frac{3 p q}{R^{2}} \cos \delta=\frac{3 x^{2}}{R^{2}} \sin \delta-\frac{3 p q}{R^{2}} \cos \delta \\
& \left(\sin 2 \delta-\frac{3 y s}{R^{2}}\right) \sin \delta-\left(1-A_{3} \sin ^{2} \delta\right) \cos \delta=2 \sin ^{2} \delta \cos \delta-\cos ^{3} \delta-\frac{3\left(p^{2}+q^{2}\right)+3 x^{2}}{R^{2}} \sin ^{2} \delta \cos \delta-\frac{3 p q}{R^{2}} \sin \delta=-\cos \delta-\frac{3 p q}{R^{2}} \sin \delta
\end{aligned}
$$

For the integration, we substitute $\left\{\begin{array}{lll}x & \rightarrow \xi \\ y & \rightarrow \tilde{y}=\eta \cos \delta+q \sin \delta \\ d & \rightarrow \tilde{d}=\eta \sin \delta-q \cos \delta & R^{2}=\xi^{2}+\eta^{2}+q^{2}=\xi^{2}+\tilde{y}^{2}+\tilde{d}^{2} \\ c \rightarrow \tilde{c}=\tilde{d}+z=\eta \sin \delta-h & h=q \cos \delta-z \\ p \rightarrow \eta \\ q \rightarrow q & \end{array}\right.$
So, integrand becomes
$u_{A}^{o}=\left(\begin{array}{l}u_{1}=\frac{1-\alpha}{2} \frac{\xi}{R^{3}}-\frac{\alpha}{2} \frac{3 \xi q^{2}}{R^{5}} \\ u_{2}=\frac{1-\alpha}{2} \frac{\eta}{R^{3}}-\frac{\alpha}{2} \frac{3 \eta q^{2}}{R^{5}} \\ u_{3}=\frac{1-\alpha}{2} \frac{q}{R^{3}}+\frac{\alpha}{2} \frac{3 q^{3}}{R^{5}}\end{array}\right) \quad u_{B}^{o}=\left(\begin{array}{l}u_{1}=\frac{3 \xi q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha} I_{3}^{0} \sin ^{2} \delta \\ u_{2}=\frac{3 \eta q^{2}}{R^{5}}-\frac{1-\alpha}{\alpha}\left(I_{1}^{0} \cos \delta+I_{5}^{0} \sin \delta\right) \sin ^{2} \delta \\ u_{3}=-\frac{3 q^{3}}{R^{5}}+\frac{1-\alpha}{\alpha}\left(I_{1}^{0} \sin \delta-I_{5}^{0} \cos \delta\right) \sin ^{2} \delta\end{array}\right)$

$$
\begin{aligned}
& I_{1}^{0}=\tilde{y}\left[\frac{1}{R(R+\tilde{d})^{2}}-\xi^{2} \frac{3 R+\tilde{d}}{R^{3}(R+\tilde{d})^{3}}\right] \\
& I_{2}^{0}=\xi\left[\frac{1}{R(R+\tilde{d})^{2}}-\tilde{y}^{2} \frac{3 R+\tilde{d}}{R^{3}(R+\tilde{d})^{3}}\right] \\
& I_{3}^{0}=\frac{\xi}{R^{3}}-I_{2}^{0}
\end{aligned}
$$

$$
I_{5}^{0}=\frac{1}{R(R+\tilde{d})}-\xi^{2} \frac{2 R+\tilde{d}}{R^{3}(R+\tilde{d})^{2}}
$$

$u_{C}^{o}=\left(\begin{array}{ll}u_{1}=-(1-\alpha) \frac{3 \xi(\eta \sin \delta+q \cos \delta)}{R^{5}} & +15 \alpha \frac{(\eta \sin \delta-h) \xi q^{2}}{R^{7}}-\alpha \frac{3 \xi z}{R^{5}} \\ u_{2}=-(1-\alpha)\left(-\frac{3 \xi^{2}}{R^{5}} \sin \delta+\frac{3 \eta q}{R^{5}} \cos \delta\right) & +15 \alpha \frac{(\eta \sin \delta-h) \eta q^{2}}{R^{7}}-\alpha \frac{3 \eta z}{R^{5}}-\frac{3 q^{2}}{R^{5}} \sin \delta \\ u_{3}=(1-\alpha)\left(\frac{\cos \delta}{R^{3}}+\frac{3 \eta q}{R^{5}} \sin \delta\right)+\alpha q(\eta \sin \delta-h)\left(\frac{6}{R^{5}}-\frac{15 q^{2}}{R^{7}}\right)+\alpha \frac{3 q z}{R^{5}}-\frac{3 q^{2}}{R^{5}} \cos \delta\end{array}\right)$
At first, let us integrate with ξ (refer Appendix : Table of Integration)
$\int u_{A}^{o} d \xi=\left(\begin{array}{l}u_{1}=-\frac{1-\alpha}{2} \frac{1}{R} \\ u_{2}=-\frac{1}{2} \frac{q^{2}}{R^{3}} \\ u_{3}=-\frac{1-\alpha}{2} q X_{11}+\frac{\alpha}{2} \eta{X_{11}}^{2}-\frac{\alpha}{2} q^{3} X_{32}\end{array}\right) \quad \int u_{B}^{o} d \xi=\left(\begin{array}{ll}u_{1}=-\frac{q^{2}}{R^{3}} & -\frac{1-\alpha}{\alpha} \int I_{3}^{0} d \xi \sin ^{2} \delta \\ u_{2}=-\eta q^{2} X_{32} & -\frac{1-\alpha}{\alpha} \int\left(I_{1}^{0} \cos \delta+I_{5}^{0} \sin \delta\right) d \xi \sin ^{2} \delta \\ u_{3}= & q^{3} X_{32}+\frac{1-\alpha}{\alpha} \int\left(I_{1}^{0} \sin \delta-I_{5}^{0} \cos \delta\right) d \xi \sin ^{2} \delta\end{array}\right)$
$\int u_{C}^{o} d \xi=\left(\begin{array}{lll}u_{1}=(1-\alpha) \frac{\eta \sin \delta+q \cos \delta}{R^{3}} & -3 \alpha q^{2} \frac{\eta \sin \delta-h}{R^{5}} & +\alpha \frac{z}{R^{3}} \\ u_{2}=-(1-\alpha)\left(\frac{\xi}{R^{3}} \sin \delta+X_{11} \sin \delta-\eta q X_{32} \cos \delta\right)-\alpha \eta q^{2}(\eta \sin \delta-h) X_{53}+\alpha \eta z X_{32}+q^{2} X_{32} \sin \delta \\ u_{3}=-(1-\alpha)\left(X_{11} \cos \delta+\eta q X_{32} \sin \delta\right) & -\alpha q(\eta \sin \delta-h)\left(2 X_{32}-q^{2} X_{53}\right)-\alpha q z X_{32}+q^{2} X_{32} \cos \delta\end{array}\right) \quad \begin{aligned} & X_{11}=\frac{1}{R(R+\xi)} \\ & X_{32}=\frac{2 R+\xi}{R^{3}(R+\xi)^{2}} \\ & X_{53}=\frac{8 R^{2}+9 R \xi+3 \xi^{2}}{R^{5}(R+\xi)^{3}}\end{aligned}$
Next, let us integrate with η (refer Appendix : Table of Integration)

$$
\begin{aligned}
& \iint u_{A}^{o} d \xi d \eta=\left(\begin{array}{lr}
u_{1}=-\frac{1-\alpha}{2} \ln (R+\eta)-\frac{\alpha}{2} q^{2} Y_{11} \\
u_{2}=-\frac{1-\alpha}{2} \ln (R+\xi)-\frac{\alpha}{2} q^{2} X_{11} \\
u_{3}=\frac{\Theta}{2} & -\frac{\alpha}{2} q\left(\eta X_{11}+\xi Y_{11}\right)
\end{array}\right) \\
& \iint u_{B}^{o} d \xi d \eta=\left(\begin{array}{lr}
u_{1}=q^{2} Y_{11} & -\frac{1-\alpha}{\alpha} \iint I_{3}^{0} d \xi d \eta \sin ^{2} \delta \\
u_{2}=q^{2} X_{11} & +\frac{1-\alpha}{\alpha} \iint_{1}\left(-I_{1}^{0} \cos \delta-I_{5}^{0} \sin \delta\right) d \xi d \eta \sin ^{2} \delta \\
u_{3}=q\left(\eta X_{11}+\xi Y_{11}\right)-\Theta-\frac{1-\alpha}{\alpha} \iint\left(-I_{1}^{0} \sin \delta+I_{5}^{0} \cos \delta\right) d \xi d \eta \sin ^{2} \delta
\end{array}\right) \\
& \iint u_{C}^{o} d \xi d \eta=\left(\begin{array}{ll}
u_{1}=-(1-\alpha)\left(\frac{\sin \delta}{R}+q Y_{11} \cos \delta\right) \\
u_{2}=(1-\alpha)\left(\xi Y_{11} \sin \delta+\frac{\Theta}{q} \sin \delta-q X_{11} \cos \delta\right)+(1-\alpha)\left(\eta X_{11}+\xi Y_{11}-\frac{\Theta}{q}\right) \sin \delta+\alpha q^{2}(\eta \sin \delta-h) X_{32}-\alpha z X_{11} \\
u_{3}=-(1-\alpha)\left(\frac{\Theta}{q} \cos \delta+q X_{11} \sin \delta\right)+\alpha q\left(2 X_{11}-q^{2} X_{32}\right) \sin \delta+(1-\alpha)\left(\eta X_{11}+\xi Y_{11}-\frac{\xi}{q R}\right) \cos \delta-\alpha q h\left(\eta X_{32}+\xi Y_{32}\right)
\end{array}\right)
\end{aligned}
$$

Here,

$$
\begin{aligned}
u_{2}^{C}= & (1-\alpha)\left[2 \xi Y_{11} \sin \delta+(\eta \cos \delta+q \sin \delta) X_{11}\right]-\alpha\left[z X_{11}-q^{2}(\eta \sin \delta-h) X_{32}\right] \\
& =(1-\alpha) 2 \xi Y_{11} \sin \delta+\tilde{d} X_{11}-\alpha(\tilde{d}+z) X_{11}-\alpha \tilde{c} q^{2} X_{32}=(1-\alpha) 2 \xi Y_{11} \sin \delta+\tilde{d} X_{11}-\alpha \tilde{c}\left(X_{11}-q^{2} X_{32}\right) \\
u_{3}^{C}= & (1-\alpha)\left(q X_{11} \sin \delta+\eta X_{11} \cos \delta+\xi Y_{11} \cos \delta\right)-\alpha q\left[\left(q^{2} X_{32}-2 X_{11}\right) \sin \delta+\eta h X_{32}+\xi h Y_{32}\right] \\
& =(1-\alpha)\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)+\alpha q\left[\left(\eta^{2} X_{32}+\frac{\xi}{R^{3}}\right) \sin \delta-\eta h X_{32}-\xi h Y_{32}\right] \\
& =(1-\alpha)\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)+\alpha q\left[\eta(\eta \sin \delta-h) X_{32}+\xi\left(\frac{\sin \delta}{R^{3}}-h Y_{32}\right)\right]
\end{aligned}
$$

The above three vectors correspond to the contents of the row of Tensile in Table 6.
(4) Evaluation of $\iint I_{1}^{0} d \xi d \eta \sim \iint I_{5}^{0} d \xi d \eta$

For the integration, we substitute $\left\{\begin{array}{ll}x & \rightarrow \xi \\ y & \rightarrow \tilde{y}=\eta \cos \delta+q \sin \delta \\ d & \rightarrow \tilde{d}=\eta \sin \delta-q \cos \delta\end{array}\right.$ to I_{1}^{0} through I_{5}^{0} of the point solution in Table 2.
So, the integrands and their integral with ξ become as follows (refer Appendix : Table of Integration)

$$
\begin{cases}I_{1}^{0}=\tilde{y}\left[\frac{1}{R(R+\tilde{d})^{2}}-\xi^{2} \frac{3 R+\tilde{d}}{R^{3}(R+\tilde{d})^{3}}\right] \\ I_{2}^{0}=\xi\left[\frac{1}{R(R+\tilde{d})^{2}}-\tilde{y}^{2} \frac{3 R+d}{R^{3}(R+\tilde{d})^{3}}\right] \\ I_{3}^{0}=\frac{\xi}{R^{3}}-I_{2}^{0} & \left\{\int I_{1}^{0} d \xi=\frac{\xi \tilde{y}}{R(R+\tilde{d})^{2}}\right. \\ I_{4}^{0}=-\xi \tilde{y} \frac{2 R+\tilde{d}}{R^{3}(R+\tilde{d})^{2}} & \int I_{2}^{0} d \xi=-\frac{1}{R+\tilde{d}}+\frac{\tilde{y}^{2}}{R(R+\tilde{d})^{2}} \\ I_{5}^{0}=\frac{1}{R(R+\tilde{d})}-\xi^{2} \frac{2 R+\tilde{d}}{R^{3}(R+\tilde{d})^{2}} & \int I_{4}^{0} d \xi=-\frac{1}{R}-\int I_{2}^{0} d \xi \\ R(R+\tilde{d})\end{cases}
$$

Next, let us integrate with η (refer Appendix : Table of Integration)
(a) $I_{5} \equiv \iint I_{5}^{0} d \xi d \eta=\int \frac{\xi}{R(R+\tilde{d})} d \eta \quad\left(R^{2}=\eta^{2}+X^{2}, X^{2}=\xi^{2}+q^{2}, \tilde{d}=\eta \sin \delta-q \cos \delta\right)$
< Case $1>X \neq 0$
By changing integral variable $\eta \rightarrow t=\frac{R-X}{\eta}=\frac{\eta}{R+X}\left(X^{2}=\xi^{2}+q^{2}\right), \quad R=\frac{1+t^{2}}{1-t^{2}} X, \quad \eta=\frac{2 t}{1-t^{2}} X, \quad d \eta=\frac{2\left(1+t^{2}\right)}{\left(1-t^{2}\right)^{2}} X d t$

$$
\begin{align*}
& \text { and from the formula } \int \frac{d x}{a x^{2}+b x+c}= \begin{cases}\frac{1}{\sqrt{4 a c-b^{2}}} \tan ^{-1} \frac{2 a x+b}{\sqrt{4 a c-b^{2}}} & \text { for } b^{2}<4 a c \\
-\frac{2}{2 a x+b} & \text { for } b^{2}=4 a c \quad b^{2}-4 a c=-4 \xi^{2} \cos ^{2} \delta\end{cases} \\
& \int \frac{\xi}{R(R+\tilde{d})} d \eta=\int \frac{\xi}{\frac{1+t^{2}}{1-t^{2}} X\left(\frac{1+t^{2}}{1-t^{2}} X+\frac{2 t \sin \delta}{1-t^{2}} X-q \cos \delta\right)} \frac{2\left(1+t^{2}\right)}{\left(1-t^{2}\right)^{2}} X d t=\int \frac{2 \xi}{(X+q \cos \delta) t^{2}+(2 X \sin \delta) t+(X-q \cos \delta)} d t \\
& \quad= \begin{cases}\frac{2 \xi}{|\xi \cos \delta|} \tan ^{-1} \frac{(X+q \cos \delta) t+X \sin \delta}{|\xi \cos \delta|}=\frac{2}{\cos \delta} \tan ^{-1} \frac{\eta(X+q \cos \delta)+X(R+X) \sin \delta}{\xi(R+X) \cos \delta} & \text { for } \xi \cos \delta \neq 0 \\
-\frac{2 \xi}{(X+q \cos \delta) t+X \sin \delta}=-\frac{2 \xi(R+X)}{\eta(X+q \cos \delta)+X(R+X) \sin \delta} & \text { for } \xi \cos \delta=0\end{cases} \tag{1}
\end{align*}
$$

In the latter case, $I_{5}=0$ if $\xi=0$
while if $\cos \delta=0, \quad \sin \delta= \pm 1 \quad$ and $\quad I_{5}=\int \frac{\xi}{R(R \pm \eta)} d \eta=\mp \frac{\xi}{R \pm \eta}=-\frac{\xi \sin \delta}{R+\eta \sin \delta}=-\frac{\xi \sin \delta}{R+\tilde{d}}$
<Case 2>X=0 $\quad(\xi=q=0, R=|\eta|)$

$$
I_{5}=\int \frac{\xi}{R(R+\tilde{d})} d \eta=\int \frac{\xi}{|\eta|(|\eta|+\eta \sin \delta)} d \eta=0
$$

So, as a whole, $I_{5}=0$ when $\xi=0$. Otherwise I_{5} takes either of (1) or (2) depending on $\cos \delta=0$ or not.
(b) $I_{4} \equiv \iint I_{4}^{0} d \xi d \eta=\int \frac{\tilde{y}}{R(R+\tilde{d})} d \eta \quad\left(R^{2}=\xi^{2}+\tilde{y}^{2}+\tilde{d}^{2}, \tilde{y}=\eta \cos \delta+q \sin \delta, \quad \tilde{d}=\eta \sin \delta-q \cos \delta\right)$
< Case $1>\boldsymbol{\operatorname { c o s }} \boldsymbol{\delta} \neq 0$
Since $\tilde{y}=\frac{1}{\cos \delta}(\eta-\tilde{d} \sin \delta)$

$$
I_{4}=\frac{1}{\cos \delta} \int \frac{\eta-\tilde{d} \sin \delta}{R(R+\tilde{d})} d \eta=\frac{1}{\cos \delta} \int\left(\frac{\eta}{R(R+\tilde{d})}+\frac{\sin \delta}{R+\tilde{d}}-\frac{\sin \delta}{R}\right) d \eta=\frac{1}{\cos \delta}[\ln (R+\tilde{d})-\sin \delta \ln (R+\eta)]
$$

< Case $2>\cos \boldsymbol{\delta}=\mathbf{0} \quad(\sin \delta= \pm 1)$
Since $\tilde{y}= \pm q$ and $\tilde{d}= \pm \eta, \quad I_{4}=\int \frac{ \pm q}{R(R \pm \eta)} d \eta=-\frac{q}{R \pm \eta}=-\frac{q}{R+\tilde{d}}$
(c) $I_{1} \equiv \iint I_{1}^{0} d \xi d \eta=\int \frac{\xi \tilde{y}}{R(R+\tilde{d})^{2}} d \eta \quad\left(R^{2}=\xi^{2}+\tilde{y}^{2}+\tilde{d}^{2}, \tilde{y}=\eta \cos \delta+q \sin \delta, \tilde{d}=\eta \sin \delta-q \cos \delta\right)$
< Case $1>\cos \boldsymbol{\delta} \neq 0$
Since $\tilde{y}=\frac{1}{\cos \delta}(\eta-\tilde{d} \sin \delta)$

$$
I_{1}=\frac{\xi}{\cos \delta} \int \frac{\eta-\tilde{d} \sin \delta}{R(R+\tilde{d})^{2}} d \eta=\frac{\xi}{\cos \delta} \int\left(\frac{\eta}{R(R+\tilde{d})^{2}}+\frac{\sin \delta}{(R+\tilde{d})^{2}}-\frac{\sin \delta}{R(R+\tilde{d})}\right) d \eta=-\frac{1}{\cos \delta}\left(\frac{\xi}{R+\tilde{d}}+I_{5} \sin \delta\right)
$$

$<\operatorname{Case} 2>\cos \boldsymbol{\delta}=0 \quad(\sin \delta= \pm 1)$
Since $\tilde{y}= \pm q$ and $\tilde{d}= \pm \eta, \quad I_{1}=\int \frac{ \pm \xi q}{R(R \pm \eta)^{2}} d \eta=-\frac{\zeta q}{2(R \pm \eta)^{2}}=-\frac{\xi q}{2(R+\tilde{d})^{2}}$
(d) $I_{2} \equiv \iint I_{2}^{0} d \xi d \eta=-\int\left(\frac{1}{R+\tilde{d}}-\frac{\tilde{y}^{2}}{R(R+\tilde{d})^{2}}\right) d \eta$
< Case $1>\cos \delta \neq 0$
Since $\tilde{y}=\frac{1}{\cos \delta}(\eta-\tilde{d} \sin \delta)$

$$
\begin{aligned}
I_{2}= & -\int\left[\frac{1}{R+\tilde{d}}-\frac{1}{\cos \delta} \frac{\eta \tilde{y}}{R(R+\tilde{d})^{2}}+\frac{\sin \delta}{\cos \delta}\left(\frac{\tilde{y}}{R(R+\tilde{d})}-\frac{\tilde{y}}{(R+\tilde{d})^{2}}\right)\right] d \eta \\
& =-\frac{1}{\cos \delta} \int\left[\frac{\cos \delta}{R+\tilde{d}}-\frac{\eta \tilde{y}}{R(R+\tilde{d})^{2}}-\frac{\tilde{y} \sin \delta}{(R+\tilde{d})^{2}}\right]-\frac{\sin \delta}{\cos \delta} I_{4}=-\frac{1}{\cos \delta} \frac{\tilde{y}}{R+\tilde{d}}-\frac{\sin \delta}{\cos \delta} I_{4}
\end{aligned}
$$

< Case $2>\cos \delta=0 \quad(\sin \delta= \pm 1)$
Since $\tilde{y}= \pm q, \tilde{d}= \pm \eta$ and $-\ln (R-\eta)=\ln (R+\eta)-\ln \left(R^{2}-\eta^{2}\right)$

$$
I_{2}=-\int\left(\frac{1}{R \pm \eta}-\frac{q^{2}}{R(R \pm \eta)^{2}}\right) d \eta=-\frac{1}{2}\left(\frac{\eta}{R \pm \eta} \pm \ln (R \pm \eta)\right) \mp \frac{q^{2}}{2(R \pm \eta)^{2}}=-\frac{1}{2}\left(\frac{\eta}{R+\tilde{d}}+\ln (R+\eta)\right)-\frac{\tilde{y} q}{2(R+\tilde{d})^{2}}
$$

(e) $I_{3} \equiv \iint I_{3}^{0} d \xi d \eta=-\int \frac{1}{R} d \eta-\iint I_{2}^{0} d \xi d \eta=-\ln (R+\eta)-I_{2}$

As a conclusion, the latter part of $\boldsymbol{u}_{\boldsymbol{B}}$ including \boldsymbol{I}_{1} through I_{4} in Table 6 are given as follows $(\boldsymbol{\operatorname { c o s }} \boldsymbol{\delta} \neq \mathbf{0})$.
(1) Strike-slip

$$
\begin{array}{cc}
u_{1}{ }^{B}: & \boldsymbol{I}_{1} \equiv \iint I_{1}^{0} d \xi d \eta=-\frac{1}{\cos \delta}\left(\frac{\xi}{R+\tilde{d}}+I_{5} \sin \delta\right)=-\frac{\xi}{R+\tilde{d}} \cos \delta-I_{4} \sin \delta \quad\left(\operatorname{since} \quad I_{5}=-\frac{\xi}{R+\tilde{d}} \sin \delta-I_{4} \cos \delta\right) \\
u_{2}{ }^{B}: & \iint\left(-I_{2}^{0} \cos \delta-I_{4}^{0} \sin \delta\right) d \xi d \eta=\left(\frac{1}{\cos \delta} \frac{\tilde{y}}{R+\tilde{d}}+\frac{\sin \delta}{\cos \delta} I_{4}\right) \cos \delta-I_{4} \sin \delta=\frac{\tilde{y}}{R+\tilde{d}} \\
u_{3}{ }^{B}: & \boldsymbol{I}_{2} \equiv \iint\left(-I_{2}^{0} \cos \delta+I_{4}^{0} \sin [\delta) \rrbracket d \xi d \eta=\left(\frac{1}{\cos \delta} \frac{\tilde{y}}{R+\tilde{d}}+\frac{\sin \delta}{\cos \delta} I_{4}\right) \sin \delta+I_{4} \cos \delta=\frac{\sin \delta}{\cos \delta} \frac{\tilde{y}}{R+\tilde{d}}+\frac{1}{\cos \delta} I_{4}\right. \\
& =\frac{\sin \delta}{\cos \delta} \frac{\tilde{y}}{R+\tilde{d}}+\frac{1}{\cos ^{2} \delta}[\ln (R+\tilde{d})-\sin \delta \ln (R+\eta)]=\ln (R+\tilde{d})+I_{3} \sin \delta
\end{array}
$$

(2) Dip-slip and Tensile

$$
\begin{array}{cc}
u_{1}{ }^{B}: & \boldsymbol{I}_{3} \equiv \iint I_{3}^{0} d \xi d \eta=-\ln (R+\eta)-I_{2}=-\ln (R+\eta)+\frac{1}{\cos \delta} \frac{\tilde{y}}{R+\tilde{d}}+\frac{\sin \delta}{\cos \delta} I_{4}=\frac{1}{\cos \delta} \frac{\tilde{y}}{R+\tilde{d}}-\frac{1}{\cos ^{2} \delta}[\ln (R+\eta)-\sin \delta \ln (R+\tilde{d})] \\
u_{2}{ }^{B}: & \iint\left(-I_{1}^{0} \cos \delta-I_{5}^{0} \sin \delta\right) d \xi d \eta=\left(\frac{1}{\cos \delta} \frac{\xi}{R+\tilde{d}}+\frac{\sin \delta}{\cos \delta} I_{5}\right) \cos \delta-I_{5} \sin \delta=\frac{\xi}{R+\tilde{d}} \\
u_{3}{ }^{B}: & I_{4} \equiv \iint\left(-I_{1}^{0} \sin \delta+I_{5}^{0} \cos (\delta) \rrbracket d \xi d \eta=\left(\frac{1}{\cos \delta} \frac{\xi}{R+\tilde{d}}+\frac{\sin \delta}{\cos \delta} I_{5}\right) \sin \delta+I_{5} \cos \delta=\frac{\sin \delta}{\cos \delta} \frac{\xi}{R+\tilde{d}}+\frac{1}{\cos \delta} I_{5}\right. \\
& =\frac{\sin \delta}{\cos \delta} \frac{\xi}{R+\tilde{d}}+\frac{2}{\cos ^{2} \delta} \tan ^{-1} \frac{\eta(X+q \cos \delta)+X(R+X) \sin \delta}{\xi(R+X) \cos \delta}
\end{array}
$$

In case of $\boldsymbol{\operatorname { c o s }} \boldsymbol{\delta}=\mathbf{0}, \boldsymbol{I}_{3}$ and \boldsymbol{I}_{4} should be given as follows.

$$
\begin{aligned}
& \boldsymbol{I}_{3}=-\ln (R+\eta)-I_{2}=-\ln (R+\eta)+\frac{1}{2}\left(\frac{\eta}{R+\tilde{d}}+\ln (R+\eta)\right)+\frac{\tilde{y} q}{2(R+\tilde{d})^{2}}=\frac{1}{2}\left(\frac{\eta}{R+\tilde{d}}+\frac{\tilde{y} q}{(R+\tilde{d})^{2}}-\ln (R+\eta)\right) \\
& I_{4}=-I_{1} \sin \delta=\frac{\zeta q}{2(R+\tilde{d})^{2}} \sin \delta=\frac{\xi \tilde{y}}{2(R+\tilde{d})^{2}}
\end{aligned}
$$

Appendix : Table of Integration $\quad R=\sqrt{\xi^{2}+\eta^{2}+q^{2}}=\sqrt{\xi^{2}+\tilde{y}^{2}+\tilde{d}^{2}} \quad\left\{\begin{array}{l}\tilde{y}=\eta \cos \delta+q \sin \delta \\ \tilde{d}=\eta \sin \delta-q \cos \delta\end{array}\right.$

f	$\int f d \xi$	$\int f d \eta$
$1 / R$	$\ln (R+\xi)$	$\ln (R+\eta)$
$1 / R^{3}$	- X_{11}	- \underline{Y}_{11}
$3 / R^{5}$	- X_{32}	$-Y_{32}$
$15 / R^{7}$	$-X_{53}$	$-Y_{53}$
ξ / R^{3}	-1/R	$-\xi Y_{11}$
$3 \xi / R^{5}$	$-1 / R^{3}$	- $Y^{1} Y_{32}$
$15 \xi / R^{7}$	$-3 / R^{5}$	$-\xi Y_{53}$
η / R^{3}	$-\eta X_{11}$	-1/R
$3 \eta / R^{5}$	$-\eta X_{32}$	$-1 / R^{3}$
$15 \eta / R^{7}$	$-\eta X_{53}$	$-3 / R^{5}$
$3 \xi^{2} / R^{5}$	$-\frac{\xi}{R^{3}}-X_{11}$	$-\xi^{2} Y_{32}$
$15 \xi^{2} / R^{7}$	$-\frac{3 \xi^{-}}{R^{5}}-X_{32}$	$-\xi^{2} Y_{53}$
$3 \eta^{2} / R^{5}$	$-\eta^{2} X_{32}$	$-\frac{\eta}{R^{3}}-Y_{11}$
$15 \eta^{2} / R^{7}$	$-\eta^{2} X_{53}$	$-\frac{3 \eta}{R^{5}}-Y_{32}$
X_{11}	$\begin{equation*} -\frac{1}{R+\xi} \tag{*} \end{equation*}$	$-\frac{1}{q} \tan ^{-1} \frac{\xi \eta}{q R}$
X_{32}	$-\frac{1}{R(R+\xi)^{2}}$	$\frac{1}{q^{2}}\left(\eta X_{11}+\xi Y_{11}\right)-\frac{1}{q^{3}} \tan ^{-1} \frac{\xi \eta}{q R}$
X_{53}	$-\frac{3 \dot{R}+\xi}{R^{3}(R+\xi)^{3}}$	$\frac{1}{q^{2}}\left(\eta X_{32}+\xi Y_{32}\right)+\frac{3}{q^{4}}\left(\eta X_{11}+\xi Y_{11}\right)-\frac{3}{q^{5}} \tan ^{-1} \frac{\xi \eta}{q R}$
$\xi \chi_{11}$	$\frac{1}{2}\left(\frac{R}{R+\xi}+\ln (R+\xi)\right)$	$-\frac{\xi}{q} \tan ^{-1} \frac{\xi \eta}{q R}$
ξX_{32}	$\frac{1}{2(R+\xi)^{2}}-X_{11}$	$\frac{\xi^{2}}{q^{2}}\left(\eta X_{11}+\xi Y_{11}\right)-\frac{\xi}{q^{3}} \tan ^{-1} \frac{\xi \eta}{q R}$
$\xi \chi_{53}$	$\frac{1}{R(R+\xi)^{3}}-X_{32}$	$\frac{\xi}{q^{2}}\left(\eta X_{32}+\xi Y_{32}\right)+\frac{3 \xi}{q^{4}}\left(\eta X_{11}+\xi Y_{11}\right)-\frac{3 \hat{\xi}}{q^{5}} \tan ^{-1} \frac{\xi \eta}{q R}$
ηX_{11}	$-\frac{\eta}{R+\xi}$	$\ln (R+\xi)$
ηX_{32}	$-\frac{\lambda^{\prime} \eta^{-\cdots}}{R(R+\xi)^{2}}$	$-X_{11}$
ηX_{53}	$-\frac{\eta(3 R+\xi)}{R^{3}(R+\xi)^{3}}$	$-X_{32}$
$\eta^{2} X_{32}$	$-\frac{\eta^{2}}{R(R+\xi)^{2}}$	$-\eta X_{11}-\frac{1}{q} \tan ^{-1} \frac{\xi \eta}{q R}$
$\eta^{2} X_{53}$	$-\frac{\eta^{2}(3 R+\xi)}{R^{3}(R+\xi)^{3}}$	$-\eta X_{32}+\frac{1}{q^{2}}\left(\eta X_{11}+\xi Y_{11}\right)-\frac{1}{q^{3}} \tan ^{-1} \frac{\xi \eta}{q R}$
$\eta^{3} X_{32}$	$-\frac{\eta^{3}}{R(R+\xi)^{2}}$	$2 \ln (R+\xi)-\eta^{2} X_{11}$
$\eta^{3} X_{53}$	$-\frac{\eta^{3}(3 R+\xi)}{R^{3}(R+\xi)^{3}}$	$-2 X_{11}-\eta^{2} X_{32}$

$$
\begin{array}{lll}
X_{11}=\frac{1}{R(R+\xi)} & X_{32}=\frac{2 R+\xi}{R^{3}(R+\xi)^{2}} & X_{53}=\frac{8 R^{2}+9 R \xi+3 \xi^{2}}{R^{5}(R+\xi)^{3}} \\
Y_{11}=\frac{1}{R(R+\eta)} & Y_{32}=\frac{2 R+\eta}{R^{3}(R+\eta)^{2}} & Y_{53}=\frac{8 R^{2}+9 R \eta+3 \eta^{2}}{R^{5}(R+\eta)^{3}}
\end{array}
$$

(*) Derivation of $\int \frac{d \eta}{R(R+\xi)}$
Since $\frac{1}{R(R+\xi)}=\frac{1}{R^{2}-\xi^{2}}-\frac{\xi}{R\left(R^{2}-\xi^{2}\right)}$ and $\left.\frac{1}{R^{2}-\xi^{2}}\right|_{\xi=\xi_{1}} ^{\xi=\xi_{2}}=0$,

$$
\int \frac{d \eta}{R(R+\xi)}=-\xi \int \frac{d \eta}{R\left(R^{2}-\xi^{2}\right)}=-\xi \int \frac{d \eta}{\left(\eta^{2}+q^{2}\right) \sqrt{\eta^{2}+q^{2}+\xi^{2}}}= \begin{cases}-\frac{1}{q} \tan ^{-1} \frac{\xi \eta}{q R} & \text { for } q \neq 0 \\ \frac{R}{\xi \eta} & \text { for } q=0\end{cases}
$$

Here, we have used the mathematical formula $\int \frac{d x}{\left(x^{2}+a^{2}\right) \sqrt{x^{2}+a^{2}+b^{2}}}= \begin{cases}\frac{1}{a b} \tan ^{-1}\left(\frac{b}{a} \frac{x}{\sqrt{x^{2}+a^{2}+b^{2}}}\right) & \text { for } a \neq 0, b \neq 0 \\ -\frac{\sqrt{x^{2}+b^{2}}}{b^{2} x} & \text { for } a=0, b \neq 0\end{cases}$

