Derivation of Tables 7 through 9 in Okada (1992)

[I] Derivation of Table 7 (x-Derivative)

Table 7 can be derived by differentiation of Table 6 with x-coordinate
In the following, the notation is matched with Tables in Okada (1992).
Displacement : $u_{x}(x, y, z)=\frac{U}{2 \pi}\left[u_{1}{ }^{A}-\hat{u}_{1}{ }^{A}+u_{1}{ }^{B}+z u_{1}{ }^{C}\right]$

$$
\begin{aligned}
u_{y}(x, y, z) & =\frac{U}{2 \pi}\left[\left(u_{2}{ }^{A}-\hat{u}_{2}{ }^{A}+u_{2}{ }^{B}+z u_{2}{ }^{C}\right) \cos \delta-\left(u_{3}{ }^{A}-\hat{u}_{3}{ }^{A}+u_{3}{ }^{B}+z u_{3}{ }^{C}\right) \sin \delta\right] \\
u_{z}(x, y, z) & =\frac{U}{2 \pi}\left[\left(u_{2}{ }^{A}-\hat{u}_{2}{ }^{A}+u_{2}^{B}-z u_{2}{ }^{C}\right) \sin \delta+\left(u_{3}{ }^{A}-\hat{u}_{3}{ }^{A}+u_{3}^{B}-z u_{3}{ }^{C}\right) \cos \delta\right] \\
u_{i}{ }^{A} & =\left.\left.f_{i}^{A}(\xi, \eta, z)\right|_{\xi=x} ^{\xi=x-L} \cdot\right|_{\eta=p} ^{\eta=p-W}, \quad \hat{u}_{i}{ }^{A}=f_{i}{ }^{A}(\xi, \eta,-z)\left\|, \quad u_{i}{ }^{B}=f_{i}^{B}(\xi, \eta, z)\right\|, \quad u_{i}{ }^{C}=f_{i}^{C}(\xi, \eta, z) \|
\end{aligned}
$$

x-Derivative : $\frac{\partial u_{x}}{\partial x}(x, y, z)=\frac{U}{2 \pi}\left[j_{1}{ }^{A}-\hat{\jmath}_{1}{ }^{A}+j_{1}{ }^{B}+z j_{1}{ }^{C}\right]$

$$
\begin{aligned}
& \frac{\partial u_{y}}{\partial x}(x, y, z)=\frac{U}{2 \pi}\left[\left(j_{2}{ }^{A}-\hat{\jmath}_{2}{ }^{A}+{j_{2}}^{B}+z j_{2}{ }^{C}\right) \cos \delta-\left(j_{3}{ }^{A}-\hat{\jmath}_{3}{ }^{A}+{j_{3}}^{B}+z j_{3}{ }^{C}\right) \sin \delta\right] \\
& \left.\frac{\partial u_{z}}{\partial x}(x, y, z)=\frac{U}{2 \pi}\left[{j_{2}}^{A}-\hat{\jmath}_{2}{ }^{A}+{j_{2}}^{B}-z j_{2}{ }^{C}\right) \sin \delta+\left(j_{3}{ }^{A}-\hat{\jmath}_{3}{ }^{A}+j_{3}{ }^{B}-z j_{3}{ }^{C}\right) \cos \delta\right]
\end{aligned}
$$

$$
j_{i}^{A}=\partial f_{i}^{A} / \partial x(\xi, \eta, z) \left\lvert\, \begin{gathered}
\xi=x \\
\xi=x-L \\
\xi=1 \\
\eta=p-W
\end{gathered}\right., \quad \hat{j}_{i}^{A}=\partial f_{i}^{A} / \partial x(\xi, \eta,-z)\left\|, \quad j_{i}^{B}=\partial f_{i}^{B} / \partial x(\xi, \eta, z)\right\|, \quad j_{i}^{C}=\partial f_{i}^{C} / \partial x(\xi, \eta, z) \|
$$

(1) Strike slip

$$
\begin{aligned}
& f_{i}^{A}=\left(\begin{array}{lc}
u_{1}=\frac{\theta}{2} & +\frac{\alpha}{2} \xi q Y_{11} \\
u_{2}= & \frac{\alpha}{2} \frac{q}{R} \\
u_{3}=\frac{1-\alpha}{2} \ln (R+\eta)-\frac{\alpha}{2} q^{2} Y_{11}
\end{array}\right) \quad f_{i}^{B}=\left(\begin{array}{cc}
u_{1}=-\xi q Y_{11}-\Theta-\frac{1-\alpha}{\alpha} I_{1} \sin \delta \\
u_{2}=-\frac{q}{R} & +\frac{1-\alpha}{\alpha} \frac{\tilde{y}}{R+\tilde{d}} \sin \delta \\
u_{3}=q^{2} Y_{11} & -\frac{1-\alpha}{\alpha} I_{2} \sin \delta
\end{array}\right) \quad \Theta=\tan ^{-1} \frac{\xi \eta}{q R} \\
& f_{i}^{C}=\left(\begin{array}{l}
Y_{11}=\frac{1}{R(R+\eta)} \\
u_{2}=(1-\alpha) \xi Y_{11} \cos \delta \\
u_{3}=(1-\alpha)\left(\frac{\cos \delta}{R}+2 q Y_{11} \sin \delta\right)-\alpha \frac{\tilde{c} q}{R^{3}} \\
Y_{32}=\frac{2 R+\eta}{R^{3}(R+\eta)^{2}} \\
Z_{32}=\frac{\sin \delta}{R^{3}}-h Y_{32} \\
h=q \cos \delta-z, \quad \tilde{c}=\tilde{d}+z=\eta \sin \delta-h
\end{array}\right.
\end{aligned}
$$

where, $q=y \sin \delta-d \cos \delta, \quad \tilde{y}=\eta \cos \delta+q \sin \delta, \quad \tilde{d}=\eta \sin \delta-q \cos \delta, \quad R^{2}=\xi^{2}+\eta^{2}+q^{2}=X^{2}+\eta^{2}$,

$$
\begin{array}{ll}
I_{1}=-\frac{\xi}{R+\tilde{d}} \cos \delta-I_{4} \sin \delta, \quad I_{2}=\ln (R+\tilde{d})+I_{3} \sin \delta & \\
I_{3}=\frac{1}{\cos \delta} \frac{\tilde{y}}{R+\tilde{d}}-\frac{1}{\cos ^{2} \delta}[\ln (R+\eta)-\sin \delta \ln (R+\tilde{d})] & \left(I_{3}=\frac{1}{2}\left[\frac{\eta}{R+\tilde{d}}+\frac{\tilde{y} q}{(R+\tilde{d})^{2}}-\ln (R+\eta)\right] \quad \text { if } \cos \delta=0\right) \\
I_{4}=\frac{\sin \delta}{\cos \delta} \frac{\xi}{R+\tilde{d}}+\frac{2}{\cos ^{2} \delta} \tan ^{-1} \frac{\eta(X+q \cos \delta)+X(R+X) \sin \delta}{\xi(R+X) \cos \delta} & \left(I_{4}=\frac{\xi \tilde{y}}{2(R+\tilde{d})^{2}} \quad \text { if } \cos \delta=0\right)
\end{array}
$$

By differentiation with x-coordinate (refer Appendix "Table of Differentiation of Integrals")

The above three vectors correspond to the contents of the row of Strike-Slip in Table 7.
(Evaluation of J_{1}^{x} et al. will be done in the later section)

$$
\begin{aligned}
& \frac{\partial f_{i}^{A}}{\partial x}=\left(\begin{array}{c}
-\frac{1-\alpha}{2} q Y_{11}-\frac{\alpha}{2} \xi^{2} q Y_{32} \\
-\frac{\alpha}{2} \frac{\xi q}{R^{3}} \\
\frac{1-\alpha}{2} \xi Y_{11}+\frac{\alpha}{2} \xi q^{2} Y_{32}
\end{array}\right) \quad \frac{\partial f_{i}^{B}}{\partial x}=\left(\begin{array}{cc}
\xi^{2} q Y_{32}-\frac{1-\alpha}{\alpha} J_{1}^{x} \sin \delta \\
\frac{\xi q}{R^{3}} & -\frac{1-\alpha}{\alpha} J_{2}^{x} \sin \delta \\
-\xi q^{2} Y_{32} & -\frac{1-\alpha}{\alpha} J_{3}^{x} \sin \delta
\end{array}\right) \begin{array}{l}
J_{1}^{x}=\frac{\partial I_{1}}{\partial x} \\
J_{2}^{x}=\frac{\partial}{\partial x}\left(-\frac{\tilde{y}}{R+\tilde{d}}\right) \\
J_{3}^{x}=\frac{\partial I_{2}}{\partial x}
\end{array} \\
& \frac{\partial f_{i}^{C}}{\partial x}=\left(\begin{array}{cc}
(1-\alpha) Y_{0} \cos \delta & -\alpha q Z_{0} \\
-(1-\alpha) \xi\left(\frac{\cos \delta}{R^{3}}+2 q Y_{32} \sin \delta\right)+\alpha \frac{3 \tilde{c} \xi q}{R^{5}}
\end{array}\right) \quad Y_{53}=\frac{8 R^{2}+9 R \eta+3 \eta^{2}}{R^{5}(R+\eta)^{3}}, \quad Y_{0}=Y_{11}-\xi^{2} Y_{32} \\
& \left(-(1-\alpha) \xi q Y_{32} \cos \delta \quad+\alpha \xi\left(\frac{3 \tilde{c} \eta}{R^{5}}-z Y_{32}-Z_{32}-Z_{0}\right)\right) \quad Z_{53}=\frac{3 \sin \delta}{R^{5}}-h Y_{53}, \quad Z_{0}=Z_{32}-\xi^{2} Z_{53}
\end{aligned}
$$

(2) Dip slip
$f_{i}^{A}=\left(\begin{array}{lc}u_{1}= & \frac{\alpha}{2} \frac{q}{R} \\ u_{2}=\frac{\Theta}{2} & +\frac{\alpha}{2} \eta q X_{11} \\ u_{3}=\frac{1-\alpha}{2} \ln (R+\xi)-\frac{\alpha}{2} q^{2} X_{11}\end{array}\right) \quad f_{i}^{B}=\left(\begin{array}{cc}u_{1}=-\frac{q}{R} & +\frac{1-\alpha}{\alpha} I_{3} \sin \delta \cos \delta \\ u_{2}=-\eta q X_{11}-\Theta-\frac{1-\alpha}{\alpha} \frac{\xi}{R+\tilde{d}} \sin \delta \cos \delta \\ u_{3}=q^{2} X_{11} & +\frac{1-\alpha}{\alpha} I_{4} \sin \delta \cos \delta\end{array}\right) \quad \begin{aligned} & \Theta=\tan ^{-1} \frac{\xi \eta}{q R} \\ & X_{11}=\frac{1}{R(R+\xi)}\end{aligned}$
$f_{i}^{C}=\left(\begin{array}{ll}u_{1}=(1-\alpha) \frac{\cos \delta}{R}-q Y_{11} \sin \delta & -\alpha \frac{\tilde{c} q}{R^{3}} \\ u_{2}=(1-\alpha) \tilde{y} X_{11} & -\alpha \tilde{c} q q X_{32} \\ u_{3}=-\tilde{d} X_{11}-\xi Y_{11} \sin \delta & -\alpha \tilde{c}\left(X_{11}-q^{2} X_{32}\right)\end{array}\right) \quad \begin{aligned} & Y_{11}=\frac{1}{R(R+\eta)} \\ & X_{32}=\frac{2 R+\xi}{R^{3}(R+\xi)^{2}} \\ & \tilde{c}=\tilde{d}+z\end{aligned}$
where, $q=y \sin \delta-d \cos \delta, \quad \tilde{y}=\eta \cos \delta+q \sin \delta, \quad \tilde{d}=\eta \sin \delta-q \cos \delta, \quad R^{2}=\xi^{2}+\eta^{2}+q^{2}=X^{2}+\eta^{2}$,
By differentiation with x-coordinate (refer Appendix "Table of Differentiation of Integrals")

$$
\left.\begin{array}{l}
\frac{\partial f_{i}^{A}}{\partial x}=\left(\begin{array}{cc}
-\frac{\alpha}{2} \frac{\xi q}{R^{3}} \\
-\frac{q}{2} Y_{11}-\frac{\alpha}{2} \frac{\eta q}{R^{3}} \\
\frac{1-\alpha}{2} \frac{1}{R}+\frac{\alpha}{2} \frac{q^{2}}{R^{3}}
\end{array}\right) \quad \frac{\partial f_{i}^{B}}{\partial x}=\left(\begin{array}{l}
\frac{\xi q}{R^{3}} \\
\frac{\eta q}{R^{3}}+q Y_{11}+\frac{1-\alpha}{\alpha} J_{4}^{x} \sin \delta \cos \delta \\
-\frac{q^{2}}{R^{3}} \\
J_{5}^{x} \sin \delta \cos \delta \\
+\frac{1-\alpha}{\alpha} J_{6}^{x} \sin \delta \cos \delta
\end{array}\right)
\end{array}\right) \begin{aligned}
& J_{5}^{x}=\frac{\partial I_{3}}{\partial x} \\
& J_{6}^{x}=\frac{\partial}{\partial x}\left(-\frac{\xi I_{4}}{R x}\right. \\
& \frac{\partial f_{i}^{C}}{\partial x}=\left(\begin{array}{cc}
-(1-\alpha) \frac{\xi}{R^{3}} \cos \delta+\xi q Y_{32} \sin \delta+\alpha \frac{3 \tilde{d} \xi q}{R^{5}} \\
-(1-\alpha) \frac{\tilde{y}}{R^{3}} & +\alpha \frac{3 \tilde{c} \eta q}{R^{5}} \\
\frac{\tilde{d}}{R^{3}}-Y_{0} \sin \delta & +\alpha \frac{\tilde{c}}{R^{3}}\left(1-\frac{3 q^{2}}{R^{2}}\right)
\end{array}\right) \quad \begin{array}{l}
Y_{32}=\frac{2 R+\eta}{R^{3}(R+\eta)^{2}} \\
Y_{0}=Y_{11}-\xi^{2} Y_{32}
\end{array}
\end{aligned}
$$

The above three vectors correspond to the contents of the row of Dip-Slip in Table 7.
(Evaluation of J_{4}^{x} et al. will be done in the later section)

(3) Tensile

$$
\begin{aligned}
& f_{i}^{A}=\left(\begin{array}{ll}
u_{1}=-\frac{1-\alpha}{2} \ln (R+\eta)-\frac{\alpha}{2} q^{2} Y_{11} \\
u_{2}=-\frac{1-\alpha}{2} \ln (R+\xi)-\frac{\alpha}{2} q^{2} X_{11} \\
u_{3}=\frac{\Theta}{2} & -\frac{\alpha}{2} q\left(\eta X_{11}+\xi Y_{11}\right)
\end{array}\right) \quad f_{i}^{B}=\left(\begin{array}{ll}
u_{1}=q^{2} Y_{11} & -\frac{1-\alpha}{\alpha} I_{3} \sin ^{2} \delta \\
u_{2}=q^{2} X_{11} & +\frac{1-\alpha}{\alpha} \frac{\xi}{R+\tilde{d}^{2}} \sin ^{2} \delta \\
u_{3}=q\left(\eta X_{11}+\xi Y_{11}\right)-\theta-\frac{1-\alpha}{\alpha} I_{4} \sin ^{2} \delta
\end{array}\right) \quad \begin{array}{l}
\theta=\tan ^{-1} \frac{\xi \eta}{q R} \\
X_{11}=\frac{1}{R(R+\xi)} \\
Y_{11}=\frac{1}{R(R+\eta)}
\end{array} \\
& f_{i}^{C}=\left(\begin{array}{l}
u_{1}=-(1-\alpha)\left(\frac{\sin \delta}{R}+q Y_{11} \cos \delta\right)-\alpha\left(z Y_{11}-q^{2} Z_{32}\right) \\
u_{2}=(1-\alpha) 2 \xi Y_{11} \sin \delta+\tilde{d} X_{11}-\alpha \tilde{c}\left(X_{11}-q^{2} X_{32}\right) \\
u_{3}=(1-\alpha)\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)+\alpha q\left(\tilde{c} \eta X_{32}+\xi Z_{32}\right)
\end{array}\right) \quad \begin{array}{l}
X_{32}=\frac{2 R+\xi}{R^{3}(R+\xi)^{2}}, \quad Y_{32}=\frac{2 R+\eta}{R^{3}(R+\eta)^{2}} \\
Z_{32}=\frac{\sin \delta}{R^{3}}-h Y_{32} \\
h=q \cos \delta-z, \quad \tilde{c}=\tilde{d}+z=\eta \sin \delta-h
\end{array}
\end{aligned}
$$

where, $q=y \sin \delta-d \cos \delta, \quad \tilde{y}=\eta \cos \delta+q \sin \delta, \quad \tilde{d}=\eta \sin \delta-q \cos \delta, \quad R^{2}=\xi^{2}+\eta^{2}+q^{2}=X^{2}+\eta^{2}$,
By differentiation with x-coordinate (refer Appendix "Table of Differentiation of Integrals")

$$
\left.\left.\begin{array}{l}
\frac{\partial f_{i}^{A}}{\partial x}=\left(\begin{array}{cc}
-\frac{1-\alpha}{2} \xi Y_{11}+\frac{\alpha}{2} \xi q^{2} Y_{32} \\
-\frac{1-\alpha}{2} \frac{1}{R} & +\frac{\alpha}{2} \frac{q^{2}}{R^{3}} \\
-\frac{1-\alpha}{2} q Y_{11}-\frac{\alpha}{2} q^{3} Y_{32}
\end{array}\right) \\
\frac{\partial f_{i}^{B}}{\partial x}=\left(\begin{array}{cc}
-\xi q^{2} Y_{32}-\frac{1-\alpha}{\alpha} J_{4}^{x} \sin ^{2} \delta \\
-\frac{q^{2}}{R^{3}} & -\frac{1-\alpha}{\alpha} J_{5}^{x} \sin ^{2} \delta \\
q^{3} Y_{32} & -\frac{1-\alpha}{\alpha} \int_{6}^{x} \sin ^{2} \delta
\end{array}\right)
\end{array} \begin{array}{c}
J_{4}^{x}=\frac{\partial I_{3}}{\partial x} \\
J_{5}^{x}=\frac{\partial}{\partial x}\left(-\frac{\xi}{R+\tilde{d}}\right) \\
J_{6}^{x}=\frac{\partial I_{4}}{\partial x}
\end{array}\right] \begin{array}{cc}
(1-\alpha)\left(\frac{\xi}{R^{3}} \sin \delta+\xi q Y_{32} \cos \delta\right) & +\alpha \xi\left(z Y_{32}-q^{2} Z_{53}\right) \\
2 x & Y_{53}=\frac{8 R^{2}+9 R \eta+3 \eta^{2}}{R^{5}(R+\eta)^{3}}, \quad Y_{0}=Y_{11}-\xi^{2} Y_{32} \\
2(1-\alpha) Y_{0} \sin \delta-\frac{\tilde{d}}{R^{3}} & +\alpha \frac{\tilde{c}}{R^{3}}\left(1-\frac{3 q^{2}}{R^{2}}\right) \\
-(1-\alpha)\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) & -\alpha\left(\frac{3 \tilde{c} \eta q}{R^{5}}-q Z_{0}\right)
\end{array}\right) \quad \begin{array}{cc}
Z_{53}=\frac{3 \sin \delta}{R^{5}}-h Y_{53}, \quad Z_{0}=Z_{32}-\xi^{2} Z_{53} \\
h=q \cos \delta-z, \quad \tilde{c}=\tilde{d}+z=\eta \sin \delta-h
\end{array}
$$

From (*6) of Appendix, $\quad q^{2} Z_{53}=-\frac{3 \tilde{c} \eta}{R^{5}}-h Y_{32}+2 Z_{32}-Z_{0}$
Therefore, $\quad \frac{\partial f_{1}{ }^{C}}{\partial x}=(1-\alpha)\left(\frac{\xi}{R^{3}} \sin \delta+\xi q Y_{32} \cos \delta\right)+\alpha \xi\left[\frac{3 \tilde{c} \eta}{R^{5}}+(h+z) Y_{32}-2 Z_{32}+Z_{0}\right]$ $=(1-\alpha) \frac{\xi}{R^{3}} \sin \delta+\xi q Y_{32} \cos \delta+\alpha \xi\left(\frac{3 \tilde{c} \eta}{R^{5}}-2 Z_{32}+Z_{0}\right)$
The above three vectors correspond to the contents of the row of Tensile in Table 7.
(Evaluation of J_{4}^{x} et al. will be done in the later section)

[II] Derivation of Table 8 (y-Derivative)

Table 8 can be derived by differentiation of Table 6 with y-coordinate.
In the following, the notation is matched with Tables in Okada (1992).
Displacement : $u_{x}(x, y, z)=\frac{U}{2 \pi}\left[u_{1}{ }^{A}-\hat{u}_{1}{ }^{A}+u_{1}{ }^{B}+z u_{1}{ }^{C}\right]$

$$
\begin{aligned}
u_{y}(x, y, z) & =\frac{U}{2 \pi}\left[\left(u_{2}{ }^{A}-\hat{u}_{2}{ }^{A}+u_{2}{ }^{B}+z u_{2}{ }^{C}\right) \cos \delta-\left(u_{3}{ }^{A}-\hat{u}_{3}{ }^{A}+u_{3}{ }^{B}+z u_{3}{ }^{C}\right) \sin \delta\right] \\
u_{z}(x, y, z) & =\frac{U}{2 \pi}\left[\left(u_{2}{ }^{A}-\hat{u}_{2}^{A}+u_{2}^{B}-z u_{2}{ }^{C}\right) \sin \delta+\left(u_{3}{ }^{A}-\hat{u}_{3}{ }^{A}+u_{3}^{B}-z u_{3}{ }^{C}\right) \cos \delta\right] \\
u_{i}{ }^{A} & =\left.f_{i}^{A}(\xi, \eta, z)\right|_{\xi=x} ^{\xi=x-L} \cdot \eta_{\eta=p}^{\eta=p-W}, \quad \hat{u}_{i}{ }^{A}=f_{i}{ }^{A}(\xi, \eta,-z)\left\|, \quad u_{i}{ }^{B}=f_{i}^{B}(\xi, \eta, z)\right\|, \quad u_{i}{ }^{C}=f_{i}^{C}(\xi, \eta, z) \|
\end{aligned}
$$

y-Derivative : $\frac{\partial u_{x}}{\partial y}(x, y, z)=\frac{U}{2 \pi}\left[{k_{1}}^{A}-\hat{k}_{1}{ }^{A}+{k_{1}}^{B}+z{k_{1}}^{C}\right]$

$$
\begin{aligned}
& \frac{\partial u_{y}}{\partial y}(x, y, z)=\frac{U}{2 \pi}\left[\left({k_{2}}^{A}-{\hat{k_{2}}}^{A}+{k_{2}}^{B}+z k_{2}{ }^{C}\right) \cos \delta-\left({k_{3}}^{A}-{\hat{k_{3}}}^{A}+{k_{3}}^{B}+z k_{3}{ }^{C}\right) \sin \delta\right] \\
& \frac{\partial u_{z}}{\partial y}(x, y, z)=\frac{U}{2 \pi}\left[\left({k_{2}}^{A}-\hat{k}_{2}{ }^{A}+{k_{2}}^{B}-z{k_{2}}^{C}\right) \sin \delta+\left({k_{3}}^{A}-\hat{k}_{3}{ }^{A}+{k_{3}}^{B}-z k_{3}{ }^{C}\right) \cos \delta\right]
\end{aligned}
$$

$$
k_{i}^{A}=\partial f_{i}^{A} /\left.\left.\partial y(\xi, \eta, z)\right|_{\substack{\xi=x-L}} ^{\substack{=\\ \xi=x}}\right|_{\eta=p} ^{\eta=p-W}, \quad \hat{k}_{i}^{A}=\partial f_{i}^{A} / \partial y(\xi, \eta,-z)\left\|, \quad k_{i}^{B}=\partial f_{i}^{B} / \partial y(\xi, \eta, z)\right\|, \quad k_{i}^{C}=\partial f_{i}^{C} / \partial y(\xi, \eta, z) \|
$$

(1) Strike slip

$$
\begin{aligned}
& f_{i}^{A}=\left(\begin{array}{lc}
u_{1}=\frac{\Theta}{2} & +\frac{\alpha}{2} \xi q Y_{11} \\
u_{2}= & \frac{\alpha}{2} \frac{q}{R} \\
u_{3}=\frac{1-\alpha}{2} \ln (R+\eta)-\frac{\alpha}{2} q^{2} Y_{11}
\end{array}\right) \quad f_{i}^{B}=\left(\begin{array}{cc}
u_{1}=-\xi q Y_{11}-\Theta-\frac{1-\alpha}{\alpha} I_{1} \sin \delta \\
u_{2}=-\frac{q}{R} & +\frac{1-\alpha}{\alpha} \frac{\tilde{y}}{R+\tilde{d}} \sin \delta \\
u_{3}=q^{2} Y_{11} & -\frac{1-\alpha}{\alpha} I_{2} \sin \delta
\end{array}\right) \quad \Theta=\tan ^{-1} \frac{\xi \eta}{q R} \\
& f_{i}^{C}=\left(\begin{array}{l}
Y_{11}=\frac{1}{R(R+\eta)} \\
u_{2}=(1-\alpha) \xi Y_{11} \cos \delta \\
u_{3}=(1-\alpha)\left(\frac{\cos \delta}{R}+2 q Y_{11} \sin \delta\right)-\alpha \frac{\tilde{c} q}{R^{3}} \\
Y_{32}=\frac{2 R+\eta}{R^{3}(R+\eta)^{2}} \\
Z_{32}=\frac{\sin \delta}{R^{3}}-h Y_{32} \\
h=q \cos \delta-z, \quad \tilde{c}=\tilde{d}+z=\eta \sin \delta-h
\end{array}\right.
\end{aligned}
$$

where, $q=y \sin \delta-d \cos \delta, \quad \tilde{y}=\eta \cos \delta+q \sin \delta, \tilde{d}=\eta \sin \delta-q \cos \delta, \quad R^{2}=\xi^{2}+\eta^{2}+q^{2}=X^{2}+\eta^{2}$,
By differentiation with y-coordinate (refer Appendix "Table of Differentiation of Integrals")

$$
\begin{aligned}
& \frac{\partial f_{i}{ }^{A}}{\partial y}=\binom{\frac{1}{2}\left(\tilde{d} X_{11}+\xi Y_{11} \sin \delta\right)+\frac{\alpha}{2} \xi\left(\frac{\tilde{d}}{R^{3}}-\left(Y_{11}-\xi^{2} Y_{32}\right) \sin \delta\right)}{\frac{\alpha}{2}\left(\frac{\sin \delta}{R}-\frac{\tilde{y} q}{R^{3}}\right)}=\left(\begin{array}{c}
\frac{1-\alpha}{2} \xi Y_{11} \sin \delta+\frac{\tilde{d}}{2} X_{11} \\
\hline \frac{\alpha}{2} \xi F \\
\frac{\alpha}{2} E
\end{array}\right) \quad E=\frac{\sin \delta}{R}-\frac{\tilde{y} q}{R^{3}} \\
& \binom{\frac{\alpha}{2}\left(\frac{\alpha}{R}-\frac{q^{2}}{R^{3}}\right)}{\frac{1-\alpha}{2}\left(\frac{\cos \delta}{R}+q Y_{11} \sin \delta\right)-\frac{\alpha}{2} q\left(\frac{\tilde{d}}{R^{3}}+\xi^{2} Y_{32} \sin \delta\right)}=\binom{\frac{\alpha}{2}}{\frac{1-\alpha}{2}\left(\frac{\cos \delta}{R}+q Y_{11} \sin \delta\right)-\frac{\alpha}{2} q F} \quad F=\frac{\tilde{d}}{R^{3}}+\xi^{2} Y_{32} \sin \delta \\
& \frac{\partial f_{i}^{B}}{\partial y}=\left(\begin{array}{rr}
-\xi\left(\frac{\tilde{d}}{R^{3}}-\left(Y_{11}-\xi^{2} Y_{32}\right) \sin \delta\right)-\left(\tilde{d} X_{11}+\xi Y_{11} \sin \delta\right)+\frac{1-\alpha}{\alpha} J_{1}^{y} \sin \delta \\
-\left(\frac{\sin \delta}{R}-\frac{\tilde{y} q}{R^{3}}\right) & +\frac{1-\alpha}{\alpha} J_{2}^{y} \sin \delta \\
q\left(\frac{\tilde{d}}{R^{3}}+\xi^{2} Y_{32} \sin \delta\right) & -\frac{1-\alpha}{\alpha} J_{3}^{y} \sin \delta
\end{array}\right)=\left(\begin{array}{cc}
-\xi F-\tilde{d} X_{11}+\frac{1-\alpha}{\alpha} J_{1}^{y} \sin \delta \\
-E & +\frac{1-\alpha}{\alpha} J_{2}^{y} \sin \delta \\
q F & -\frac{1-\alpha}{\alpha} J_{3}^{y} \sin \delta
\end{array}\right) \begin{array}{l}
J_{1}^{y}=-\frac{\partial I_{1}}{\partial y} \\
J_{2}^{y}=\frac{\partial}{\partial y}\left(\frac{\tilde{y}}{R+\tilde{d}}\right) \\
J_{3}^{y}=\frac{\partial I_{2}}{\partial y}
\end{array}
\end{aligned}
$$

$$
\frac{\partial f_{i}^{C}}{\partial y}=\left(\begin{array}{ll}
-(1-\alpha) \xi\left(\frac{\cos \delta}{R^{3}}+q Y_{32} \sin \delta\right) \cos \delta & -\alpha \xi\left[\frac{3 \tilde{c} \tilde{d}}{R^{5}}-\left(z Y_{32}+Z_{32}+Z_{0}\right) \sin \delta\right] \\
(1-\alpha)\left\{-\frac{\tilde{y}}{R^{3}} \cos \delta+2\left(\frac{\tilde{d}}{R^{3}}-Y_{0} \sin \delta\right) \sin \delta\right\} & -\alpha \tilde{c}\left(\frac{\sin \delta}{R^{3}}-\frac{3 \tilde{y} q}{R^{5}}\right) \\
(1-\alpha)\left(\frac{\tilde{d}}{R^{3}}-Y_{0} \sin \delta\right) \cos \delta-\alpha\left[\tilde{c}\left(\frac{\cos \delta}{R^{3}}-\frac{3 \tilde{y} \eta}{R^{5}}\right)+z\left(\frac{\cos \delta}{R^{3}}+q Y_{32} \sin \delta\right)-\xi^{2}\left(\frac{3 \tilde{c}}{R^{5}} \cos \delta+\left(Y_{32} \cos \delta+q Z_{53}\right) \sin \delta\right)\right]
\end{array}\right)
$$

Since $\tilde{y} \cos \delta+\tilde{d} \sin \delta=\eta, \quad \frac{\partial f_{2}{ }^{c}}{\partial y}=2(1-\alpha)\left(\frac{\tilde{d}}{R^{3}}-Y_{0} \sin \delta\right) \sin \delta-\frac{\tilde{y}}{R^{3}} \cos \delta-\alpha\left(-\frac{\tilde{y}}{R^{3}} \cos \delta+\frac{\tilde{c}}{R^{3}} \sin \delta-\frac{3 \tilde{c} \tilde{y} q}{R^{5}}\right)$ $=2(1-\alpha)\left(\frac{\widetilde{d}}{R^{3}}-Y_{0} \sin \delta\right) \sin \delta-\frac{\tilde{y}}{R^{3}} \cos \delta-\alpha\left(\frac{\tilde{c}+\tilde{d}}{R^{3}} \sin \delta-\frac{\eta}{R^{3}}-\frac{3 \tilde{c} \tilde{y} q}{R^{5}}\right)$
Since $\tilde{y} \sin \delta-\tilde{d} \cos \delta=q, \quad z=\tilde{c}-\tilde{d}$ and $\left(Y_{11}-\xi^{2} Y_{32}\right)+\left(Y_{11}-q^{2} Y_{32}\right)=\frac{\eta}{R^{3}} \quad(\operatorname{refer}(* 3)$ of Appendix $)$

$$
\begin{aligned}
& \frac{\partial f_{3}{ }^{c}}{\partial y}=-(1-\alpha) \frac{q}{R^{3}}+(1-\alpha)\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \sin \delta-\alpha\left\{\frac{\tilde{c}+z}{R^{3}} \cos \delta-\frac{3 \tilde{c}\left(\tilde{y} \eta+\xi^{2} \cos \delta\right)}{R^{5}}+(q \cos \delta-h) q Y_{32} \sin \delta-\xi^{2}\left(Y_{32} \cos \delta+q Z_{53}\right) \sin \delta\right\} \\
& \quad=-(1-\alpha) \frac{q}{R^{3}}+\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \sin \delta-\alpha\left\{\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \sin \delta+\frac{\tilde{c}+z}{R^{3}} \cos \delta-\frac{3 \tilde{c}\left(\tilde{d} q+R^{2} \cos \delta\right)}{R^{5}}+\left(q^{2}-\xi^{2}\right) Y_{32} \sin \delta \cos \delta-q h Y_{32} \sin \delta-\xi^{2} q Z_{53} \sin \delta\right\} \\
& \quad=-(1-\alpha) \frac{q}{R^{3}}+\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \sin \delta-\alpha\left\{\frac{\eta}{R^{3}} \sin \delta \cos \delta+\frac{q^{2}}{R^{3}} \sin ^{2} \delta+\frac{z-2 \tilde{c}}{R^{3}} \cos \delta-\frac{3 \tilde{c} \tilde{d} q}{R^{5}}+\left[\left(q^{2}-\xi^{2}\right) Y_{32}-Y_{0}\right] \sin \delta \cos \delta-q \sin \delta\left(h Y_{32}+\xi^{2} Z_{53}\right)\right\} \\
& \quad=-(1-\alpha) \frac{q}{R^{3}}+\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \sin \delta-\alpha\left\{\frac{\eta \sin \delta+z-2 \tilde{c}}{R^{3}} \cos \delta-\frac{3 \tilde{c} q}{R^{5}}-\left[Y_{11}-q^{2} Y_{32}\right] \sin \delta \cos \delta+q \sin \delta\left(\frac{\sin \delta}{R^{3}}-h Y_{32}-\xi^{2} Z_{53}\right)\right\} \\
& \quad=-(1-\alpha) \frac{q}{R^{3}}+\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \sin \delta-\alpha\left\{\frac{\eta \sin \delta-\tilde{c}-\tilde{d}}{R^{3}} \cos \delta-\frac{3 \tilde{c} \tilde{q} q}{R^{5}}-\left[\frac{\eta}{R^{3}}-Y_{0}\right] \sin \delta \cos \delta+q Z_{0} \sin \delta\right\} \\
& \quad=-(1-\alpha) \frac{q}{R^{3}}+\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \sin \delta+\alpha\left\{\frac{\tilde{c}+\tilde{d}}{R^{3}} \cos \delta+\frac{3 \tilde{c} \tilde{d} q}{R^{5}}-\left(Y_{0} \cos \delta+q Z_{0}\right) \sin \delta\right\}
\end{aligned}
$$

The above three vectors correspond to the contents of the row of Strike-Slip in Table 8.
(Evaluation of J_{1}^{y} et al. will be done in the later section)

(2) Dip slip

$$
\begin{aligned}
& f_{i}^{A}=\left(\begin{array}{lr}
u_{1}= & \frac{\alpha}{2} \frac{q}{R} \\
u_{2}=\frac{\Theta}{2} & +\frac{\alpha}{2} \eta q X_{11} \\
u_{3}=\frac{1-\alpha}{2} \ln (R+\xi)-\frac{\alpha}{2} q^{2} X_{11}
\end{array}\right) \quad f_{i}^{B}=\left(\begin{array}{lr}
u_{1}=-\frac{q}{R} & +\frac{1-\alpha}{\alpha} I_{3} \sin \delta \cos \delta \\
u_{2}=-\eta q X_{11}-\Theta-\frac{1-\alpha}{\alpha} \frac{\xi}{R+\tilde{d}} \sin \delta \cos \delta \\
u_{3}=q^{2} X_{11} & +\frac{1-\alpha}{\alpha} I_{4} \sin \delta \cos \delta
\end{array}\right) \quad \Theta=\tan ^{-1} \frac{\xi \eta}{q R} \\
& f_{i}^{C}=\left(\begin{array}{ll}
u_{1}=(1-\alpha) \frac{\cos \delta}{R}-q Y_{11} \sin \delta & -\alpha \frac{\tilde{c} q}{R^{3}} \\
u_{2}= & (1-\alpha) \tilde{y} X_{11} \\
u_{3}=-\tilde{d} X_{11}-\tilde{\xi} Y_{11} \sin \delta & -\alpha \tilde{c}\left(X_{11}-\alpha q^{2} X_{32}\right)
\end{array}\right) \quad \begin{array}{l}
Y_{11}=\frac{1}{R(R+\eta)} \\
X_{32}=\frac{2 R+\xi}{R^{3}(R+\xi)^{2}} \\
\tilde{c}=\tilde{d}+z
\end{array}
\end{aligned}
$$

where, $q=y \sin \delta-d \cos \delta, \quad \tilde{y}=\eta \cos \delta+q \sin \delta, \quad \tilde{d}=\eta \sin \delta-q \cos \delta, \quad R^{2}=\xi^{2}+\eta^{2}+q^{2}=X^{2}+\eta^{2}$,

By differentiation with y-coordinate (refer Appendix "Table of Differentiation of Integrals")

$$
\begin{aligned}
& \frac{\partial f_{i}^{A}}{\partial y}=\left(\begin{array}{c}
\frac{\alpha}{2}\left(\frac{\sin \delta}{R}-\frac{\tilde{y} q}{R^{3}}\right) \\
\frac{1}{2}\left(\tilde{d} X_{11}+\xi Y_{11} \sin \delta\right)+\frac{\alpha}{2}\left[(2 \eta \sin \delta-\tilde{d}) X_{11}-\tilde{y} \eta q X_{32}\right] \\
\frac{1-\alpha}{2} \tilde{y} X_{11}
\end{array}-\frac{\alpha}{2} q\left(2 X_{11} \sin \delta-\tilde{y} q X_{32}\right) \quad\left(\begin{array}{c}
\frac{\alpha}{2} E \\
\frac{1-\alpha}{2} \tilde{d} X_{11}+\frac{\xi}{2} Y_{11} \sin \delta+\frac{\alpha}{2} \eta G \\
\frac{1-\alpha}{2} \tilde{y} X_{11}
\end{array} \begin{array}{l}
E=\frac{\sin \delta}{R}-\frac{\tilde{y} q}{R^{3}} \\
G=2 X_{11} \sin \delta-\tilde{y} q X_{32}
\end{array}\right.\right. \\
& \frac{\partial f_{i}^{B}}{\partial y}=\left(\begin{array}{lr}
-\left(\frac{\sin \delta}{R}-\frac{\tilde{y} q}{R^{3}}\right) & +\frac{1-\alpha}{\alpha} J_{4}^{y} \sin \delta \cos \delta \\
-\left[(2 \eta \sin \delta-\tilde{d}) X_{11}-\tilde{y} \eta q X_{32}\right]-\left(\tilde{d} X_{11}+\xi Y_{11} \sin \delta\right) & +\frac{1-\alpha}{\alpha} J_{5}^{y} \sin \delta \cos \delta \\
q\left(2 X_{11} \sin \delta-\tilde{y} q X_{32}\right) & +\frac{1-\alpha}{\alpha} J_{6}^{y} \sin \delta \cos \delta
\end{array}\right) \\
& =\left(\begin{array}{lr}
-E & +\frac{1-\alpha}{\alpha} J_{4}^{y} \sin \delta \cos \delta \\
-\eta G-\xi Y_{11} \sin \delta & +\frac{1-\alpha}{\alpha} J_{5}^{y} \sin \delta \cos \delta \\
q G & +\frac{1-\alpha}{\alpha} J_{6}^{y} \sin \delta \cos \delta
\end{array}\right) \quad \begin{array}{l}
J_{4}^{y}=\frac{\partial I_{3}}{\partial y} \\
\end{array}
\end{aligned}
$$

$\frac{\partial f_{i}^{C}}{\partial y}=\left(\begin{array}{ll}-(1-\alpha) \frac{\tilde{y}}{R^{3}} \cos \delta-\left(\frac{\tilde{d}}{R^{3}}-Y_{0} \sin \delta\right) \sin \delta-\alpha \tilde{c}\left(\frac{\sin \delta}{R^{3}}-\frac{3 \tilde{y} q}{R^{5}}\right) \\ (1-\alpha)\left(X_{11}-\tilde{y}^{2} X_{32}\right) & -\alpha \tilde{c}\left[(\tilde{d}+2 q \cos \delta) X_{32}-\tilde{y} \eta q X_{53}\right] \\ \tilde{y} \tilde{d} X_{32}+\xi\left(\frac{\cos \delta}{R^{3}}+q Y_{32} \sin \delta\right) \sin \delta & +\alpha \tilde{c}\left[\tilde{y} X_{32}+q\left(2 X_{32} \sin \delta-\tilde{y} q X_{53}\right)\right]\end{array}\right)$
Since $\tilde{y} \cos \delta+\tilde{d} \sin \delta=\eta, \quad \frac{\partial f_{1}{ }^{c}}{\partial y}=-(1-\alpha)\left(\frac{\eta}{R^{3}}-\frac{\tilde{d}}{R^{3}} \sin \delta\right)-\frac{\tilde{d}}{R^{3}} \sin \delta+Y_{0} \sin ^{2} \delta-\alpha\left(\frac{\tilde{c}}{R^{3}} \sin \delta-\frac{3 \tilde{c} \tilde{y} q}{R^{5}}\right)$
$=-(1-\alpha) \frac{\eta}{R^{3}}+Y_{0} \sin ^{2} \delta-\alpha\left(\frac{\tilde{c}+\tilde{d}}{R^{3}} \sin \delta-\frac{3 \tilde{c} \tilde{y} q}{R^{5}}\right)$
The above three vectors correspond to the contents of the row of Dip-Slip in Table 8.
(Evaluation of J_{4}^{y} et al. will be done in the later section)
(3) Tensile
where, $q=y \sin \delta-d \cos \delta, \quad \tilde{y}=\eta \cos \delta+q \sin \delta, \tilde{d}=\eta \sin \delta-q \cos \delta, \quad R^{2}=\xi^{2}+\eta^{2}+q^{2}=X^{2}+\eta^{2}$,
By differentiation with y-coordinate (refer Appendix "Table of Differentiation of Integrals")

$$
\frac{\partial f_{i}^{A}}{\partial y}=\left(\begin{array}{ll}
-\frac{1-\alpha}{2}\left(\frac{\cos \delta}{R}+q Y_{11} \sin \delta\right) & -\frac{\alpha}{2} q\left(\frac{\tilde{d}}{R^{3}}+\xi^{2} Y_{32} \sin \delta\right) \\
-\frac{1-\alpha}{2} \tilde{y} X_{11} & -\frac{\alpha}{2} q\left(2 X_{11} \sin \delta-\tilde{y} q X_{32}\right) \\
\frac{1}{2}\left(\tilde{d} X_{11}+\xi Y_{11} \sin \delta\right) & -\frac{\alpha}{2}\left\{(\tilde{d}+2 q \cos \delta) X_{11}-\tilde{y} \eta q X_{32}+\xi\left(\frac{\tilde{d}}{R^{3}}-Y_{0} \sin \delta\right)\right\}
\end{array}\right) \quad Y_{0}=Y_{11}-\xi^{2} Y_{32}
$$

Since $\left(Y_{11}-\xi^{2} Y_{32}\right)+\left(Y_{11}-q^{2} Y_{32}\right)=\frac{\eta}{R^{3}}$ (refer (*3) of Appendix)

$$
\begin{aligned}
\frac{\partial f_{3}^{A}}{\partial y} & =\frac{1}{2}\left(\tilde{d} X_{11}+\xi Y_{11} \sin \delta\right)-\frac{\alpha}{2}\left\{\tilde{d} X_{11}+2 q X_{11} \cos \delta-\tilde{y} \eta q X_{32}+\xi\left(\frac{\tilde{d}}{R^{3}}-\left[\frac{\eta}{R^{3}}-\left(Y_{11}-q^{2} Y_{32}\right)\right] \sin \delta\right)\right\} \\
& =\frac{1-\alpha}{2}\left(\tilde{d} X_{11}+\xi Y_{11} \sin \delta\right)-\frac{\alpha}{2}\left\{2 q X_{11} \cos \delta-\tilde{y} \eta q X_{32}-\frac{\xi q}{R^{3}} \cos \delta-\xi q^{2} Y_{32} \sin \delta\right\} \\
& =\frac{1-\alpha}{2}\left(\tilde{d} X_{11}+\xi Y_{11} \sin \delta\right)+\frac{\alpha}{2} q H
\end{aligned}
$$

Here, $\quad H=-2 X_{11} \cos \delta+\tilde{y} \eta X_{32}+\frac{\xi}{R^{3}} \cos \delta+\xi q Y_{32} \sin \delta$

$$
=-2 X_{11} \cos \delta+(\eta \cos \delta+q \sin \delta) \eta X_{32}+\frac{\xi}{R^{3}} \cos \delta+\xi q Y_{32} \sin \delta
$$

$$
=\left(\eta^{2} X_{32}+\frac{\xi}{R^{3}}-2 X_{11}\right) \cos \delta+\eta q X_{32} \sin \delta+\xi q Y_{32} \sin \delta
$$

$$
=\frac{2 R+\xi}{R^{3}(R+\xi)^{2}}\left(\xi^{2}+\eta^{2}-R^{2}\right) \cos \delta+\eta q X_{32} \sin \delta+\xi q Y_{32} \sin \delta
$$

$$
=-q^{2} X_{32} \cos \delta+\eta q X_{32} \sin \delta+\xi q Y_{32} \sin \delta
$$

$$
=(\eta \sin \delta-q \cos \delta) q X_{32}+\xi q Y_{32} \sin \delta=\tilde{d} q X_{32}+\xi q Y_{32} \sin \delta
$$

Therefore,

$$
\left.\frac{\partial f_{i}^{A}}{\partial y}=\left(\begin{array}{rr}
-\frac{1-\alpha}{2}\left(\frac{\cos \delta}{R}+q Y_{11} \sin \delta\right)-\frac{\alpha}{2} q F \\
-\frac{1-\alpha}{2} \tilde{y} X_{11} & -\frac{\alpha}{2} q G \\
\frac{1-\alpha}{2}\left(\tilde{d} X_{11}+\xi Y_{11} \sin \delta\right) & +\frac{\alpha}{2} q H
\end{array}\right) \quad \begin{array}{l}
F=\frac{\tilde{d}}{R^{3}}+\xi^{2} Y_{32} \sin \delta \\
G=2 X_{11} \sin \delta-\tilde{y} q X_{32} \\
H
\end{array}\right)=\tilde{d} q X_{32}+\xi q Y_{32} \sin \delta
$$

$$
\begin{aligned}
& f_{i}^{A}=\left(\begin{array}{l}
u_{1}=-\frac{1-\alpha}{2} \ln (R+\eta)-\frac{\alpha}{2} q^{2} Y_{11} \\
u_{2}=-\frac{1-\alpha}{2} \ln (R+\xi)-\frac{\alpha}{2} q^{2} X_{11} \\
u_{3}=\frac{\Theta}{2} \quad-\frac{\alpha}{2} q\left(\eta X_{11}+\xi Y_{11}\right)
\end{array}\right) \\
& f_{i}^{B}=\left(\begin{array}{lc}
u_{1}=q^{2} Y_{11} & -\frac{1-\alpha}{\alpha} I_{3} \sin ^{2} \delta \\
u_{2}=q^{2} X_{11} & +\frac{1-\alpha}{\alpha} \frac{\xi}{R+\tilde{d}} \sin ^{2} \delta \\
u_{3}=q\left(\eta X_{11}+\xi Y_{11}\right)-\theta-\frac{1-\alpha}{\alpha} I_{4} \sin ^{2} \delta
\end{array}\right) \\
& \theta=\tan ^{-1} \frac{\xi \eta}{q R} \\
& X_{11}=\frac{1}{R(R+\xi)} \\
& Y_{11}=\frac{1}{R(R+\eta)} \\
& f_{i}^{c}=\left(\begin{array}{l}
u_{1}=-(1-\alpha)\left(\frac{\sin \delta}{R}+q Y_{11} \cos \delta\right)-\alpha\left(z Y_{11}-q^{2} Z_{32}\right) \\
u_{2}=(1-\alpha) 2 \xi Y_{11} \sin \delta+\tilde{d} X_{11}-\alpha \tilde{c}\left(X_{11}-q^{2} X_{32}\right) \\
u_{3}=(1-\alpha)\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)+\alpha q\left(\tilde{c} \eta X_{32}+\xi Z_{32}\right)
\end{array}\right) \quad \begin{array}{l}
X_{32}=\frac{2 R+\xi}{R^{3}(R+\xi)^{2}}, \quad Y_{32}=\frac{2 R+\eta}{R^{3}(R+\eta)^{2}} \\
Z_{32}=\frac{\sin \delta}{R^{3}}-h Y_{32} \\
h=q \cos \delta-z, \quad \tilde{c}=\tilde{d}+z=\eta \sin \delta-h
\end{array}
\end{aligned}
$$

The above three vectors correspond to the contents of the row of Tensile in Table 7.
(Evaluation of J_{4}^{y} et al. will be done in the later section)

[III] Derivation of Table 9 (z-Derivative)

Table 9 can be derived by differentiation of Table 6 with z-coordinate.
In the following, the notation is matched with Tables in Okada (1992).
Displacement : $u_{x}(x, y, z)=\frac{U}{2 \pi}\left[u_{1}{ }^{A}-\hat{u}_{1}{ }^{A}+u_{1}{ }^{B}+z u_{1}{ }^{C}\right]$

$$
\begin{aligned}
u_{y}(x, y, z) & =\frac{U}{2 \pi}\left[\left(u_{2}{ }^{A}-\hat{u}_{2}{ }^{A}+u_{2}{ }^{B}+z u_{2}{ }^{C}\right) \cos \delta-\left(u_{3}{ }^{A}-\hat{u}_{3}{ }^{A}+u_{3}{ }^{B}+z u_{3}{ }^{C}\right) \sin \delta\right] \\
u_{z}(x, y, z) & =\frac{U}{2 \pi}\left[\left(u_{2}{ }^{A}-\hat{u}_{2}{ }^{A}+u_{2}{ }^{B}-z u_{2}{ }^{C}\right) \sin \delta+\left(u_{3}{ }^{A}-\hat{u}_{3}{ }^{A}+u_{3}{ }^{B}-z u_{3}{ }^{C}\right) \cos \delta\right] \\
u_{i}{ }^{A} & =\left.\left.f_{i}{ }^{A}(\xi, \eta, z)\right|_{\xi=x} ^{\xi=x-L} \cdot\right|_{\eta=p} ^{\eta=p-W}, \quad \hat{u}_{i}{ }^{A}=f_{i}{ }^{A}(\xi, \eta,-z)\left\|, \quad u_{i}{ }^{B}=f_{i}{ }^{B}(\xi, \eta, z)\right\|, \quad u_{i}{ }^{C}=f_{i}{ }^{C}(\xi, \eta, z) \|
\end{aligned}
$$

$$
\text { z-Derivative : } \frac{\partial u_{x}}{\partial z}(x, y, z)=\frac{U}{2 \pi}\left[l_{1}^{A}+\hat{l}_{1}^{A}+l_{1}^{B}+u_{1}^{C}+z l_{1}{ }^{C}\right]
$$

$$
\frac{\partial u_{y}}{\partial z}(x, y, z)=\frac{U}{2 \pi}\left[\left(l_{2}^{A}+\hat{l}_{2}^{A}+{l_{2}}^{B}+u_{2}^{C}+z l_{2}^{C}\right) \cos \delta-\left(l_{3}^{A}+\hat{l}_{3}^{A}+l_{3}^{B}+u_{3}^{C}+z l_{3}^{C}\right) \sin \delta\right]
$$

$$
\frac{\partial u_{z}}{\partial z}(x, y, z)=\frac{U}{2 \pi}\left[\left(l_{2}^{A}+\hat{l}_{2}^{A}+l_{2}^{B}-u_{2}^{C}-z l_{2}{ }^{C}\right) \sin \delta+\left(l_{3}{ }^{A}+\hat{l}_{3}^{A}+l_{3}^{B}-+u_{3}^{C}-z l_{3}{ }^{C}\right) \cos \delta\right]
$$

$$
l_{i}^{A}=\partial f_{i}^{A} /\left.\partial z(\xi, \eta, z)\right|_{\xi=x} ^{\xi=x-L} .\left.\right|_{\eta=p} ^{\eta=p-W}, \quad \hat{l}_{i}^{A}=\partial f_{i}^{A} / \partial z(\xi, \eta,-z)\left\|, \quad l_{i}^{B}=\partial f_{i}^{B} / \partial z(\xi, \eta, z)\right\|, \quad l_{i}^{C}=\partial f_{i}^{C} / \partial z(\xi, \eta, z) \|
$$

(1) Strike slip
where, $q=y \sin \delta-d \cos \delta, \quad \tilde{y}=\eta \cos \delta+q \sin \delta, \quad \tilde{d}=\eta \sin \delta-q \cos \delta, \quad R^{2}=\xi^{2}+\eta^{2}+q^{2}=X^{2}+\eta^{2}$,

$$
\begin{aligned}
& f_{i}^{A}=\left(\begin{array}{ll}
u_{1}=\frac{\Theta}{2} \\
u_{2}= & +\frac{\alpha}{2} \xi q Y_{11} \\
\frac{\alpha}{2} \frac{q}{2}
\end{array}\right) \quad f_{i}^{B}=\left(\begin{array}{lc}
u_{1}=-\xi q Y_{11}-\Theta-\frac{1-\alpha}{\alpha} I_{1} \sin \delta \\
u_{2}=-\frac{q}{R} & +\frac{1-\alpha}{\alpha} \frac{\tilde{y}}{2} \sin \delta
\end{array}\right) \quad \Theta=\tan ^{-1} \frac{\xi \eta}{q R} \\
& f_{i}^{A}=\left(\begin{array}{cc}
u_{2}= & \frac{\alpha}{2} \frac{q}{R} \\
u_{3}=\frac{1-\alpha}{2} \ln (R+\eta)-\frac{\alpha}{2} q^{2} Y_{11}
\end{array}\right) \quad f_{i}^{B}=\left(\begin{array}{cc}
u_{2}=-\frac{q}{R} & +\frac{1-\alpha}{\alpha} \frac{\tilde{y}}{R+\tilde{d}} \sin \delta \\
u_{3}=q^{2} Y_{11} & -\frac{1-\alpha}{\alpha} I_{2} \sin \delta
\end{array}\right) \quad Y_{11}=\frac{1}{R(R+\eta)} \\
& f_{i}^{C}=\left(\begin{array}{lc}
u_{1}=(1-\alpha) \xi Y_{11} \cos \delta & -\alpha \xi q Z_{32} \\
u_{2}=(1-\alpha)\left(\frac{\cos \delta}{R}+2 q Y_{11} \sin \delta\right)-\alpha \frac{\tilde{c} q}{R^{3}} \\
u_{3}=(1-\alpha) q Y_{11} \cos \delta-\alpha\left(\frac{\tilde{c} \eta}{R^{3}}-z Y_{11}+\xi^{2} Z_{32}\right)
\end{array}\right) \\
& Y_{32}=\frac{2 R+\eta}{R^{3}(R+\eta)^{2}} \\
& Z_{32}=\frac{\sin \delta}{R^{3}}-h Y_{32} \\
& h=q \cos \delta-z, \quad \tilde{c}=\tilde{d}+z=\eta \sin \delta-h
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial f_{i}^{C}}{\partial y}=\left(\begin{array}{cc}
(1-\alpha)\left\{\frac{\tilde{y}}{R^{3}} \sin \delta-\left(\frac{\tilde{d}}{R^{3}}-Y_{0}\right) \sin \delta \cos \delta\right\} & +\alpha\left\{z\left(\frac{\cos \delta}{R^{3}}+q Y_{32} \sin \delta\right)+q\left[\frac{3 \tilde{c} \tilde{d}}{R^{5}}-\left(z Y_{32}+Z_{0}\right) \sin \delta\right]\right\} \\
-2(1-\alpha) \xi\left(\frac{\cos \delta}{R^{3}}+q Y_{32} \sin \delta\right) \sin \delta-\tilde{y} \tilde{d} X_{32} & +\alpha \tilde{c}\left[\tilde{y} X_{32}+\left(2 q X_{32} \sin \delta-\tilde{y} q^{2} X_{53}\right)\right] \\
(1-\alpha)\left\{X_{11}-\tilde{y}^{2} X_{32}-\xi\left(\frac{\cos \delta}{R^{3}}+q Y_{32} \sin \delta\right) \cos \delta\right\}+\alpha\left\{\tilde{c}\left[(\tilde{d}+2 q \cos \delta) X_{32}-\tilde{y} \eta q X_{53}\right]+\xi\left[\frac{3 \tilde{c} \tilde{d}}{R^{5}}-\left(z Y_{32}+Z_{32}+Z_{0}\right) \sin \delta\right]\right\}
\end{array}\right) \\
& =\left(\begin{array}{cc}
(1-\alpha)\left(\frac{q}{R^{3}}+Y_{0} \sin \delta \cos \delta\right) & +\alpha\left(\frac{z}{R^{3}} \cos \delta+\frac{3 \tilde{c} \tilde{d} q}{R^{5}}-q Z_{0} \sin \delta\right) \\
-2(1-\alpha) \xi P \sin \delta-\tilde{y} \tilde{d} X_{32} & +\alpha \tilde{c}\left[(\tilde{y}+2 q \sin \delta) X_{32}-\tilde{y} q^{2} X_{53}\right] \\
-(1-\alpha)\left(\xi P \cos \delta-X_{11}+\tilde{y}^{2} X_{32}\right)+\alpha \tilde{c}\left[(\tilde{d}+2 q \cos \delta) X_{32}-\tilde{y} \eta q X_{53}\right]
\end{array}\right) \quad \begin{array}{c}
P=\frac{\cos \delta}{R^{3}+q Y_{32} \sin \delta} \\
Q=\frac{3 \tilde{c} \tilde{d}}{R^{5}}-\left(z Y_{32}+Z_{32}+Z_{0}\right) \sin \delta
\end{array}
\end{aligned}
$$

By differentiation with y-coordinate (refer Appendix "Table of Differentiation of Integrals")

$$
\text { Here, } \quad \frac{\partial f_{2}{ }^{c}}{\partial z}=2(1-\alpha)\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \sin \delta+\frac{\tilde{d}}{R^{3}} \cos \delta-\alpha\left(\frac{\tilde{c}+\tilde{d}}{R^{3}} \cos \delta+\frac{3 \tilde{c} \tilde{d} q}{R^{5}}\right)
$$

And since $z=\tilde{c}-\tilde{d}$ and $\left(Y_{11}-\xi^{2} Y_{32}\right)+\left(Y_{11}-q^{2} Y_{32}\right)=\frac{\eta}{R^{3}}$ (refer (*3) of Appendix)

$$
\begin{aligned}
\frac{\partial f_{3}^{c}}{\partial z} & =\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \cos \delta+\alpha\left\{-\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \cos \delta+\frac{\tilde{c}+z}{R^{3}} \sin \delta-\frac{3 \tilde{c}\left(\tilde{d} \eta+\xi^{2} \sin \delta\right)}{R^{5}}+Y_{11}-(q \cos \delta-h) q Y_{32} \cos \delta-\xi^{2}\left(Y_{32} \sin ^{2} \delta-q Z_{53} \cos \delta\right)\right\} \\
& =\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \cos \delta+\alpha\left\{-\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \cos \delta+\frac{\tilde{c}+z}{R^{3}} \sin \delta+\frac{3 \tilde{c}\left(\tilde{y} q-R^{2} \sin \delta\right)}{R^{5}}+Y_{11}-\left(\xi^{2} \sin ^{2} \delta+q^{2} \cos ^{2} \delta\right) Y_{32}+q h Y_{32} \cos \delta+\xi^{2} q Z_{53} \cos \delta\right\} \\
& =\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \cos \delta+\alpha\left\{-\frac{\eta}{R^{3}} \cos ^{2} \delta-\frac{q}{R^{3}} \sin \delta \cos \delta+\frac{z-2 \tilde{c}}{R^{3}} \sin \delta+\frac{3 \tilde{c} \tilde{y} q}{R^{5}}+Y_{11}-\xi^{2} Y_{32} \sin ^{2} \delta+\left(Y_{0}-q^{2} Y_{32}\right) \cos ^{2} \delta+q \cos \delta\left(h Y_{32}+\xi^{2} Z_{53}\right)\right\} \\
& =\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \cos \delta+\alpha\left\{-\frac{\eta}{R^{3}} \cos ^{2} \delta-\frac{\tilde{c}+\tilde{d}}{R^{3}} \sin \delta+\frac{3 \tilde{y} \tilde{y} q}{R^{5}}+Y_{11}-\xi^{2} Y_{32} \sin ^{2} \delta+\left(\frac{\eta}{R^{3}}-Y_{11}\right) \cos ^{2} \delta-q \cos \delta\left(\frac{\sin \delta}{R^{3}}-h Y_{32}-\xi^{2} Z_{53}\right)\right\} \\
& =\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \cos \delta+\alpha\left\{-\frac{\tilde{c}+\tilde{d}}{R^{3}} \sin \delta+\frac{3 \tilde{c} \tilde{q} q}{R^{5}}+Y_{11} \sin ^{2} \delta-\xi^{2} Y_{32} \sin ^{2} \delta-q Z_{0} \cos \delta\right\} \\
& =\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \cos \delta-\alpha\left\{\frac{\tilde{c}+\tilde{d}}{R^{3}} \sin \delta-\frac{3 \tilde{c} \tilde{y} q}{R^{5}}-Y_{0} \sin ^{2} \delta+q Z_{0} \cos \delta\right\}
\end{aligned}
$$

The above three vectors correspond to the contents of the row of Strike-Slip in Table 9. (Evaluation of J_{1}^{z} et al. will be done in the later section)
(2) Dip slip
$f_{i}^{A}=\left(\begin{array}{ll}u_{1}= & \frac{\alpha}{2} \frac{q}{R} \\ u_{2}=\frac{\theta}{2} & +\frac{\alpha}{2} \eta q X_{11} \\ u_{3}=\frac{1-\alpha}{2} \ln (R+\xi)-\frac{\alpha}{2} q^{2} X_{11}\end{array}\right) \quad f_{i}^{B}=\left(\begin{array}{cc}u_{1}=-\frac{q}{R} & +\frac{1-\alpha}{\alpha} I_{3} \sin \delta \cos \delta \\ u_{2}=-\eta q X_{11}-\Theta-\frac{1-\alpha}{\alpha} \frac{\xi}{R+\tilde{d}} \sin \delta \cos \delta \\ u_{3}=q^{2} X_{11} & +\frac{1-\alpha}{\alpha} I_{4} \sin \delta \cos \delta\end{array}\right) \quad \begin{aligned} & \Theta=\tan ^{-1} \frac{\xi \eta}{q R} \\ & X_{11}=\frac{1}{R(R+\xi)}\end{aligned}$
$f_{i}^{C}=\left(\begin{array}{ll}u_{1}=(1-\alpha) \frac{\cos \delta}{R}-q Y_{11} \sin \delta & -\alpha \frac{\tilde{c} q}{R^{3}} \\ u_{2}=(1-\alpha) \tilde{y} X_{11} & -\alpha \tilde{c} \eta q X_{32} \\ u_{3}=-\tilde{d} X_{11}-\xi Y_{11} \sin \delta & -\alpha \tilde{c}\left(X_{11}-q^{2} X_{32}\right)\end{array}\right) \quad \begin{aligned} & Y_{11}=\frac{1}{R(R+\eta)} \\ & X_{32}=\frac{2 R+\xi}{R^{3}(R+\xi)^{2}} \\ & \tilde{c}=\tilde{d}+z\end{aligned}$
where, $q=y \sin \delta-d \cos \delta, \quad \tilde{y}=\eta \cos \delta+q \sin \delta, \quad \tilde{d}=\eta \sin \delta-q \cos \delta, \quad R^{2}=\xi^{2}+\eta^{2}+q^{2}=X^{2}+\eta^{2}$,
By differentiation with y-coordinate (refer Appendix "Table of Differentiation of Integrals")

$$
\frac{\partial f_{i}^{A}}{\partial z}=\left(\begin{array}{cc}
\frac{\alpha}{2}\left(\frac{\cos \delta}{R}+\frac{\tilde{d} q}{R^{3}}\right) \\
\frac{1}{2}\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right) & +\frac{\alpha}{2}\left[(2 \eta \cos \delta-\tilde{y}) X_{11}+\tilde{d} \eta q X_{32}\right] \\
-\frac{1-\alpha}{2} \tilde{d} X_{11} & -\frac{\alpha}{2} q\left(2 X_{11} \cos \delta+\tilde{d} q X_{32}\right)
\end{array}\right)=\left(\begin{array}{cc}
\frac{\alpha}{2} E^{\prime} \\
\frac{1-\alpha}{2} \tilde{y} X_{11}+\frac{\xi}{2} Y_{11} \cos \delta+\frac{\alpha}{2} \eta G^{\prime} \\
-\frac{1-\alpha}{2} \tilde{d} X_{11} & -\frac{\alpha}{2} q G^{\prime}
\end{array}\right) \begin{aligned}
& E^{\prime}=\frac{\cos \delta}{R}+\frac{\tilde{d} q}{R^{3}} \\
& G^{\prime}=2 X_{11} \cos \delta+\tilde{d} q X_{32}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial f_{i}{ }^{A}}{\partial z}=\left(\begin{array}{cc}
\frac{1}{2}\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right) & +\frac{\alpha}{2} \xi\left[\frac{\tilde{y}}{R^{3}}-\left(Y_{11}-\xi^{2} Y_{32}\right) \cos \delta\right] \\
\frac{\alpha}{2}\left(\frac{\cos \delta}{R}+\frac{\tilde{d} q}{R^{3}}\right) \\
-\frac{1-\alpha}{2}\left(\frac{\sin \delta}{R}-q Y_{11} \cos \delta\right)-\frac{\alpha}{2} q\left(\frac{\tilde{y}}{R^{3}}+\xi^{2} Y_{32} \cos \delta\right)
\end{array}\right)=\left(\begin{array}{cc}
\frac{1-\alpha}{2} \xi Y_{11} \cos \delta+\frac{\tilde{y}}{2} X_{11} & +\frac{\alpha}{2} \xi F^{\prime} \\
& \frac{\alpha}{2} E^{\prime} \\
-\frac{1-\alpha}{2}\left(\frac{\sin \delta}{R}-q Y_{11} \cos \delta\right)-\frac{\alpha}{2} q F^{\prime}
\end{array}\right) \begin{array}{l}
E^{\prime}=\frac{\cos \delta}{R}+\frac{\tilde{d} q}{R^{3}} \\
F^{\prime}=\frac{\tilde{y}}{R^{3}}+\xi^{2} Y_{32} \cos \delta
\end{array} \\
& \frac{\partial f_{i}{ }^{B}}{\partial z}=\left(\begin{array}{lr}
-\xi\left(\frac{\tilde{y}}{R^{3}}-\left(Y_{11}-\xi^{2} Y_{32}\right) \cos \delta\right]-\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right) & +\frac{1-\alpha}{\alpha} J_{1}^{z} \sin \delta \\
-\left(\frac{\cos \delta}{R}+\frac{\tilde{d} q}{R^{3}}\right) & +\frac{1-\alpha}{\alpha} J_{2}^{z} \sin \delta \\
q\left(\frac{\tilde{y}}{R^{3}}+\xi^{2} Y_{32} \cos \delta\right) & +\frac{1-\alpha}{\alpha} J_{3}^{z} \sin \delta
\end{array}\right)=\left(\begin{array}{rr}
-\xi F^{\prime}-\tilde{y} X_{11}+\frac{1-\alpha}{\alpha} J_{1}^{z} \sin \delta \\
-E^{\prime} & +\frac{1-\alpha}{\alpha} J_{2}^{z} \sin \delta \\
q F^{\prime} & +\frac{1-\alpha}{\alpha} J_{3}^{z} \sin \delta
\end{array}\right) \begin{array}{l}
J_{1}^{z}=-\frac{\partial I_{1}}{\partial z} \\
J_{2}^{z}=\frac{\partial}{\partial z}\left(\frac{\tilde{y}}{R+\tilde{d}}\right) \\
J_{3}^{z}=-\frac{\partial I_{2}}{\partial z}
\end{array} \\
& \frac{\partial f_{i}^{C}}{\partial z}=\left(\begin{array}{ll}
(1-\alpha) \xi\left(\frac{\sin \delta}{R^{3}}-q Y_{32} \cos \delta\right) \cos \delta & -\alpha \xi\left\{\frac{3 \tilde{c} \tilde{y}}{R^{5}}+q Y_{32}-\left(z Y_{32}+Z_{32}+Z_{0}\right) \cos \delta\right\} \\
(1-\alpha)\left\{\frac{\tilde{d}}{R^{3}} \cos \delta+2\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \sin \delta\right\} & -\alpha \tilde{c}\left(\frac{\cos \delta}{R^{3}}+\frac{3 \tilde{d} q}{R^{5}}\right) \\
(1-\alpha)\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \cos \delta+\alpha\left\{\tilde{c}\left(\frac{\sin \delta}{R^{3}}-\frac{3 \tilde{d} \eta}{R^{5}}\right)+Y_{11}+z\left(\frac{\sin \delta}{R^{3}}-q Y_{32} \cos \delta\right)-\xi^{2}\left(\frac{3 \tilde{c}}{R^{5}} \sin \delta+Y_{32} \sin ^{2} \delta-q Z_{53} \cos \delta\right)\right\}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial f_{i}^{B}}{\partial z}=\left(\begin{array}{rr}
-\left(\frac{\cos \delta}{R}+\frac{\tilde{d} q}{R^{3}}\right) & -\frac{1-\alpha}{\alpha} J_{4}^{z} \sin \delta \cos \delta \\
-\left[(2 \eta \cos \delta-\tilde{y}) X_{11}+\tilde{d} \eta q X_{32}\right]-\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right) & -\frac{1-\alpha}{\alpha} J_{5}^{z} \sin \delta \cos \delta \\
q\left(2 X_{11} \cos \delta+\tilde{d} q X_{32}\right) & -\frac{1-\alpha}{\alpha} J_{6}^{z} \sin \delta \cos \delta
\end{array}\right)=\left(\begin{array}{lr}
-E^{\prime} & -\frac{1-\alpha}{\alpha} J_{4}^{z} \sin \delta \cos \delta \\
-\eta G^{\prime}-\xi Y_{11} \cos \delta-\frac{1-\alpha}{\alpha} J_{5}^{z} \sin \delta \cos \delta \\
q G^{\prime} & -\frac{1-\alpha}{\alpha} J_{6}^{z} \sin \delta \cos \delta
\end{array}\right) \begin{array}{l}
J_{5}^{Z}=-\frac{\partial I_{3}}{\partial z} \\
J_{6}^{z}=\frac{\partial}{\partial z}\left(\frac{\xi}{R+\tilde{d}}\right) \\
\frac{\partial I_{4}}{\partial z}
\end{array} \\
& \frac{\partial f_{i}^{C}}{\partial z}=\left(\begin{array}{cc}
(1-\alpha) \frac{\tilde{d}}{R^{3}} \cos \delta-\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \sin \delta & -\alpha \tilde{c}\left(\frac{\cos \delta}{R^{3}}+\frac{3 \tilde{d} q}{R^{5}}\right) \\
(1-\alpha) \tilde{y} \tilde{d} X_{32} & -\alpha \tilde{c}\left[(\tilde{y}-2 q \sin \delta) X_{32}+\tilde{d} \eta q X_{53}\right] \\
X_{11}-\tilde{d}^{2} X_{32}-\xi\left(\frac{\sin \delta}{R^{3}}-q Y_{32} \cos \delta\right) \sin \delta-\alpha \tilde{c}\left(\tilde{d} X_{32}-2 q X_{32} \cos \delta-\tilde{d} q^{2} X_{53}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{\tilde{d} \cos \delta-\tilde{y} \sin \delta}{R^{3}}+Y_{0} \sin \delta \cos \delta-\alpha\left(\frac{\tilde{c}+\tilde{d}}{R^{3}} \cos \delta+\frac{3 \tilde{c} \tilde{d} q}{R^{5}}\right) \\
(1-\alpha) \tilde{y} \tilde{d} X_{32} & -\alpha \tilde{c}\left[(\tilde{y}-2 q \sin \delta) X_{32}+\tilde{d} \eta q X_{53}\right] \\
-\xi P^{\prime} \sin \delta+X_{11}-\tilde{d}^{2} X_{32} & -\alpha \tilde{c}\left[(\tilde{d}-2 q \cos \delta) X_{32}-\tilde{d} q^{2} X_{53}\right]
\end{array}\right) \begin{array}{l}
\tilde{d} \cos \delta-\tilde{y} \sin \delta=-q \\
P^{\prime}=\frac{\sin \delta}{R^{3}}-q Y_{32} \cos \delta
\end{array}
\end{aligned}
$$

The above three vectors correspond to the contents of the row of Dip-Slip in Table 9.
(Evaluation of J_{4}^{z} et al. will be done in the later section)
(3) Tensile

$$
\begin{aligned}
& f_{i}^{A}=\left(\begin{array}{ll}
u_{1}=-\frac{1-\alpha}{2} \ln (R+\eta)-\frac{\alpha}{2} q^{2} Y_{11} \\
u_{2}=-\frac{1-\alpha}{2} \ln (R+\xi)-\frac{\alpha}{2} q^{2} X_{11} \\
u_{3}=\frac{\theta}{2} & -\frac{\alpha}{2} q\left(\eta X_{11}+\xi Y_{11}\right)
\end{array}\right) \quad f_{i}^{B}=\left(\begin{array}{ll}
u_{1}=q^{2} Y_{11} & -\frac{1-\alpha}{\alpha} I_{3} \sin ^{2} \delta \\
u_{2}=q^{2} X_{11} & +\frac{1-\alpha}{\alpha} \frac{\xi}{R+\tilde{d}^{2}} \sin ^{2} \delta \\
u_{3}=q\left(\eta X_{11}+\xi Y_{11}\right)-\theta-\frac{1-\alpha}{\alpha} I_{4} \sin ^{2} \delta
\end{array}\right) \quad \begin{array}{l}
\theta=\tan ^{-1} \frac{\xi \eta}{q R} \\
X_{11}=\frac{1}{R(R+\xi)} \\
Y_{11}=\frac{1}{R(R+\eta)}
\end{array} \\
& f_{i}^{c}=\left(\begin{array}{l}
u_{1}=-(1-\alpha)\left(\frac{\sin \delta}{R}+q Y_{11} \cos \delta\right)-\alpha\left(Z Y_{11}-q^{2} Z_{32}\right) \\
u_{2}=(1-\alpha) 2 \xi Y_{11} \sin \delta+\tilde{d} X_{11}-\alpha \tilde{c}\left(X_{11}-q^{2} X_{32}\right) \\
u_{3}=(1-\alpha)\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)+\alpha q\left(\tilde{c} \eta X_{32}+\xi Z_{32}\right)
\end{array}\right) \begin{array}{l}
X_{32}=\frac{2 R+\xi}{R^{3}(R+\xi)^{2}}, \quad Y_{32}=\frac{2 R+\eta}{R^{3}(R+\eta)^{2}} \\
Z_{32}=\frac{\sin \delta}{R^{3}}-h Y_{32} \\
h=q \cos \delta-z, \quad \tilde{c}=\tilde{d}+z=\eta \sin \delta-h
\end{array}
\end{aligned}
$$

where, $q=y \sin \delta-d \cos \delta, \quad \tilde{y}=\eta \cos \delta+q \sin \delta, \tilde{d}=\eta \sin \delta-q \cos \delta, \quad R^{2}=\xi^{2}+\eta^{2}+q^{2}=X^{2}+\eta^{2}$,
By differentiation with y-coordinate (refer Appendix "Table of Differentiation of Integrals")

$$
\frac{\partial f_{i}^{A}}{\partial z}=\left(\begin{array}{ll}
\frac{1-\alpha}{2}\left(\frac{\sin \delta}{R}-q Y_{11} \cos \delta\right) & -\frac{\alpha}{2} q\left(\frac{\tilde{y}}{R^{3}}+\xi^{2} Y_{32} \cos \delta\right) \\
\frac{1-\alpha}{2} \tilde{d} X_{11} & -\frac{\alpha}{2} q\left(2 X_{11} \cos \delta+\tilde{d} q X_{32}\right) \\
\frac{1}{2}\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)-\frac{\alpha}{2}\left[(\tilde{y}-2 q \sin \delta) X_{11}+\tilde{d} \eta q X_{32}+\xi\left(\frac{\tilde{y}}{R^{3}}-\left(Y_{11}-\xi^{2} Y_{32}\right) \cos \delta\right)\right]
\end{array}\right)
$$

Since $\left(Y_{11}-\xi^{2} Y_{32}\right)+\left(Y_{11}-q^{2} Y_{32}\right)=\frac{\eta}{R^{3}}$ (refer (*3) of Appendix)

$$
\begin{aligned}
\frac{\partial f_{3}{ }^{A}}{\partial z} & =\frac{1}{2}\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)-\frac{\alpha}{2}\left\{\tilde{y} X_{11}-2 q X_{11} \sin \delta+\tilde{d} \eta q X_{32}+\xi\left(\frac{\tilde{y}}{R^{3}}-\left[\frac{\eta}{R^{3}}-\left(Y_{11}-q^{2} Y_{32}\right)\right] \cos \delta\right)\right\} \\
& =\frac{1-\alpha}{2}\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)+\frac{\alpha}{2}\left\{2 q X_{11} \sin \delta-\tilde{d} \eta q X_{32}-\frac{\xi q}{R^{3}} \sin \delta+\xi q^{2} Y_{32} \cos \delta\right\}=\frac{1-\alpha}{2}\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)+\frac{\alpha}{2} q H^{\prime} \\
& =\frac{1-\alpha}{2}\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)+\frac{\alpha}{2} q H^{\prime} \\
H & H^{\prime} \\
& =2 X_{11} \sin \delta-\tilde{d} \eta X_{32}-\frac{\xi}{R^{3}} \sin \delta+\xi q Y_{32} \cos \delta \\
& =2 X_{11} \sin \delta-(\eta \sin \delta-q \cos \delta) \eta X_{32}-\frac{\xi}{R^{3}} \sin \delta+\xi q Y_{32} \cos \delta \\
& =-\left(\eta^{2} X_{32}+\frac{\xi}{R^{3}}-2 X_{11}\right) \sin \delta+\eta q X_{32} \cos \delta+\xi q Y_{32} \cos \delta \\
& =\frac{2 R+\xi}{R^{3}(R+\xi)^{2}}\left(R^{2}-\xi^{2}-\eta^{2}\right) \sin \delta+\eta q X_{32} \cos \delta+\xi q Y_{32} \cos \delta \\
& =q^{2} X_{32} \sin \delta+\eta q X_{32} \cos \delta+\xi q Y_{32} \cos \delta \\
& =(\eta \cos \delta+q \sin \delta) q X_{32}+\xi q Y_{32} \cos \delta \\
& =\tilde{y} q X_{32}+\xi q Y_{32} \cos \delta
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \frac{\partial f_{i}^{A}}{\partial z}=\left(\begin{array}{ll}
\frac{1-\alpha}{2}\left(\frac{\sin \delta}{R}-q Y_{11} \cos \delta\right)-\frac{\alpha}{2} q F^{\prime} \\
\frac{1-\alpha}{2} \tilde{d} X_{11} & -\frac{\alpha}{2} q G^{\prime} \\
\frac{1-\alpha}{2}\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)+\frac{\alpha}{2} q H^{\prime}
\end{array}\right) \quad \begin{array}{l}
F^{\prime}=\frac{\tilde{y}}{R^{3}}+\xi^{2} Y_{32} \cos \delta \\
G^{\prime}=2 X_{11} \cos \delta+\tilde{d} q X_{32} \\
H^{\prime}=\tilde{y} q X_{32}+\xi q Y_{32} \cos \delta
\end{array} \\
& \begin{aligned}
\frac{\partial f_{i}^{B}}{\partial z} & =\left(\begin{array}{c}
q\left(\frac{\tilde{y}}{R^{3}}+\xi^{2} Y_{32} \cos \delta\right) \\
q\left(2 X_{11} \cos \delta+\tilde{d} q X_{32}\right) \\
(\tilde{y}-2 q \sin \delta) X_{11}+\tilde{d} \eta q X_{32}+\xi\left(\frac{\tilde{y}}{R^{3}}-\left(Y_{11}-\xi^{2} Y_{32}\right) \cos \delta\right)-\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)+\frac{1-\alpha}{\alpha} J_{4}^{z} \sin ^{2} \delta \\
+\frac{1-\alpha}{\alpha} J_{5}^{z} \sin ^{2} \delta \\
J_{6}^{z} \sin ^{2} \delta
\end{array}\right) \\
& =\left(\begin{array}{cc}
q\left(\frac{\tilde{y}}{R^{3}}+\xi^{2} Y_{32} \cos \delta\right) & +\frac{1-\alpha}{\alpha} J_{4}^{z} \sin ^{2} \delta \\
q\left(2 X_{11} \cos \delta+\tilde{d} q X_{32}\right) & +\frac{1-\alpha}{\alpha} J_{5}^{z} \sin ^{2} \delta \\
-2 q X_{11} \sin \delta+\tilde{d} \eta q X_{32}+\frac{\xi q}{R^{3}} \sin \delta-\xi q^{2} Y_{32} \cos \delta+\frac{1-\alpha}{\alpha} J_{6}^{z} \sin ^{2} \delta
\end{array}\right)=\left(\begin{array}{c}
q F^{\prime}+\frac{1-\alpha}{\alpha} J_{4}^{z} \sin ^{2} \delta \\
q G^{\prime}+\frac{1-\alpha}{\alpha} J_{5}^{z} \sin ^{2} \delta \\
-q H^{\prime}+\frac{1-\alpha}{\alpha} J_{6}^{z} \sin ^{2} \delta
\end{array}\right)
\end{aligned} \\
& \frac{\partial f_{i}^{C}}{\partial z}=\left(\begin{array}{l}
-(1-\alpha)\left\{\frac{\tilde{d}}{R^{3}} \sin \delta+\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right) \cos \delta\right\} \quad-\alpha\left\{Y_{11}+z\left(\frac{\sin \delta}{R^{3}}-q Y_{32} \cos \delta\right)-q\left[\frac{3 \tilde{c} \tilde{y}}{R^{5}}+q Y_{32}-\left(z Y_{32}+Z_{0}\right) \cos \delta\right]\right\} \\
2(1-\alpha) \xi\left(\frac{\sin \delta}{R^{3}}-q Y_{32} \cos \delta\right) \sin \delta-X_{11}+\tilde{d}^{2} X_{32}-\alpha \tilde{c}\left(\tilde{d} X_{32}-2 q X_{32} \cos \delta-\tilde{d} q^{2} X_{53}\right) \\
(1-\alpha)\left\{\tilde{y} \tilde{d} X_{32}+\xi\left(\frac{\sin \delta}{R^{3}}-q Y_{32} \cos \delta\right) \cos \delta\right\}+\alpha\left\{\tilde{c}\left[(\tilde{y}-2 q \sin \delta) X_{32}+\tilde{d} \eta q X_{53}\right]+\xi\left[\frac{3 \tilde{c} \tilde{y}}{R^{5}}+q Y_{32}-\left(z Y_{32}+Z_{32}+Z_{0}\right) \cos \delta\right]\right\}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-(1-\alpha)\left(\frac{\eta}{R^{3}}-Y_{0} \cos ^{2} \delta\right) & -\alpha\left(\frac{z}{R^{3}} \sin \delta-\frac{3 \tilde{c} \tilde{y} q}{R^{5}}+Y_{11}-q^{2} Y_{32}+q Z_{0} \cos \delta\right) \\
2(1-\alpha) \xi P^{\prime}-X_{11}+\tilde{d}^{2} X_{32}-\alpha \tilde{c}\left[(\tilde{d}-2 q \cos \delta) X_{32}-\tilde{d} q^{2} X_{53}\right] \\
(1-\alpha)\left[\xi P^{\prime} \cos \delta+\tilde{y} \tilde{d} X_{32}\right]+\alpha \tilde{c}\left[(\tilde{y}-2 q \sin \delta) X_{32}+\tilde{d} \eta q X_{53}\right]+\alpha \xi Q^{\prime}
\end{array}\right) \quad \begin{array}{l}
P^{\prime}=\frac{\sin \delta}{R^{3}}-q Y_{32} \cos \delta \\
Q^{\prime}=\frac{3 \tilde{c} \tilde{y}}{R^{5}}+q Y_{32}-\left(z Y_{32}+Z_{32}+Z_{0}\right) \cos \delta
\end{array}
\end{aligned}
$$

Since $\left(Y_{11}-\xi^{2} Y_{32}\right)+\left(Y_{11}-q^{2} Y_{32}\right)=\frac{\eta}{R^{3}}$ (refer (*3) of Appendix)

$$
\begin{aligned}
\frac{\partial f_{1}{ }^{C}}{\partial z} & =-\frac{\eta}{R^{3}}+Y_{0} \cos ^{2} \delta-\alpha\left(\frac{z}{R^{3}} \sin \delta-\frac{3 \tilde{c} \tilde{y} q}{R^{5}}-\frac{\eta}{R^{3}}+Y_{0} \cos ^{2} \delta+Y_{11}-q^{2} Y_{32}+q Z_{0} \cos \delta\right) \\
& =-\frac{\eta}{R^{3}}+Y_{0} \cos ^{2} \delta-\alpha\left(\frac{z}{R^{3}} \sin \delta-\frac{3 \tilde{c} \tilde{y} q}{R^{5}}-Y_{0} \sin ^{2} \delta+q Z_{0} \cos \delta\right)
\end{aligned}
$$

The above three vectors correspond to the contents of the row of Tensile in Table 9.
(Evaluation of J_{4}^{z} et al. will be done in the next section)

[IV] Evaluation of $J_{1}^{x}-\int_{6}^{x}, J_{1}^{y}-J_{6}^{y}$ and $J_{1}^{z}-J_{6}^{z}$

$J_{1}^{x}-J_{6}^{x}, J_{1}^{y}-J_{6}^{y}$ and $J_{1}^{z}-J_{6}^{z}$ can be exaluated as follows (refer Appendix "Table of Differentiation of Integrals")

$$
\begin{array}{ll}
I_{1}=-\frac{\xi}{R+\tilde{d}} \cos \delta-I_{4} \sin \delta, \quad I_{2}=\ln (R+\tilde{d})+I_{3} \sin \delta \\
I_{3}=\frac{1}{\cos \delta} \frac{\tilde{y}}{R+\tilde{d}}-\frac{1}{\cos ^{2} \delta}[\ln (R+\eta)-\sin \delta \ln (R+\tilde{d})] & \left(I_{3}=\frac{1}{2}\left[\frac{\eta}{R+\tilde{d}}+\frac{\tilde{y} q}{(R+\tilde{d})^{2}}-\ln (R+\eta)\right] \quad \text { if } \cos \delta=0\right) \\
I_{4}=\frac{\sin \delta}{\cos \delta} \frac{\xi}{R+\tilde{d}}+\frac{2}{\cos ^{2} \delta} \tan ^{-1} \frac{\eta(X+q \cos \delta)+X(R+X) \sin \delta}{\xi(R+X) \cos \delta} & \left(I_{4}=\frac{\xi \tilde{y}}{2(R+\tilde{d})^{2}} \quad \text { if } \cos \delta=0\right)
\end{array}
$$

(a) In case of $\cos \delta \neq 0$

For x-derivative
$J_{2}^{x}=\frac{\partial}{\partial x}\left(-\frac{\tilde{y}}{R+\tilde{d}}\right)=\frac{\xi \tilde{y}}{R+\tilde{d}} D_{11} \equiv J_{2}$
$J_{5}^{x}=\frac{\partial}{\partial x}\left(-\frac{\xi}{R+\tilde{d}}\right)=-\left(\tilde{d}+\frac{\tilde{y}^{2}}{R+\tilde{d}}\right) D_{11} \equiv J_{5}$
$J_{4}^{x}=\frac{\partial I_{3}}{\partial x}=\frac{1}{\cos \delta} \frac{\partial}{\partial x}\left(\frac{\tilde{y}}{R+\tilde{d}}\right)-\frac{1}{\cos ^{2} \delta} \frac{\partial}{\partial x}[\ln (R+\eta)-\sin \delta \ln (R+\tilde{d})]=-\frac{1}{\cos \delta} \frac{\xi \tilde{y}}{R+\tilde{d}} D_{11}-\frac{\xi}{\cos ^{2} \delta}\left(Y_{11}-D_{11} \sin \delta\right) \equiv J_{4}$
$J_{6}^{x}=\frac{\partial I_{4}}{\partial x}=\frac{\sin \delta}{\cos \delta} \frac{\partial}{\partial x}\left(\frac{\xi}{R+\tilde{d}}\right)+\frac{2}{\cos ^{2} \delta} \frac{\partial}{\partial x} \tan ^{-1} \frac{\eta(X+q \cos \delta)+X(R+X) \sin \delta}{\xi(R+X) \cos \delta}=\frac{\sin \delta}{\cos \delta}\left(\tilde{d}+\frac{\tilde{y}^{2}}{R+\tilde{d}}\right) D_{11}+\frac{1}{\cos ^{2} \delta}\left(q Y_{11}-\tilde{y} D_{11}\right) \equiv J_{6}$
$J_{3}^{x}=\frac{\partial I_{2}}{\partial x}=\frac{\partial}{\partial x} \ln (R+\tilde{d})+\frac{\partial I_{3}}{\partial x} \sin \delta=\xi D_{11}-\frac{\sin \delta}{\cos \delta} \frac{\xi \tilde{y}}{R+\tilde{d}} D_{11}-\frac{\xi \sin \delta}{\cos ^{2} \delta}\left(Y_{11}-D_{11} \sin \delta\right)=-\frac{\sin \delta}{\cos \delta} \frac{\xi \tilde{y}}{R+\tilde{d}} D_{11}+\frac{\xi}{\cos ^{2} \delta}\left(D_{11}-Y_{11} \sin \delta\right) \equiv J_{3}$
$J_{1}^{x}=\frac{\partial I_{1}}{\partial x}=\frac{\partial}{\partial x}\left(-\frac{\xi}{R+\tilde{d}}\right) \cos \delta-\frac{\partial I_{4}}{\partial x} \sin \delta=-\frac{1}{\cos \delta}\left(\tilde{d}+\frac{\tilde{y}^{2}}{R+\tilde{d}}\right) D_{11}-\frac{\sin \delta}{\cos ^{2} \delta}\left(q Y_{11}-\tilde{y} D_{11}\right) \equiv J_{1}$

For y-derivative

$$
\begin{aligned}
& J_{2}^{y}=\frac{\partial}{\partial y}\left(\frac{\tilde{y}}{R+\tilde{d}}\right)=\frac{1}{R+\tilde{d}}-\frac{\tilde{y}^{2}}{R+\tilde{d}} D_{11}=\frac{1}{R+\tilde{d}}+\left(\tilde{d} D_{11}+J_{5}\right)=\frac{1}{R}+J_{5} \\
& J_{5}^{y}=\frac{\partial}{\partial y}\left(-\frac{\xi}{R+\tilde{d}}\right)=\frac{\xi \tilde{y}}{R+\tilde{d}} D_{11}=J_{2} \\
& J_{4}^{y}=\frac{\partial I_{3}}{\partial y}=\frac{1}{\cos \delta} \frac{\partial}{\partial y}\left(\frac{\tilde{y}}{R+\tilde{d}}\right)-\frac{1}{\cos ^{2} \delta} \frac{\partial}{\partial y}[\ln (R+\eta)-\sin \delta \ln (R+\tilde{d})]=\frac{1}{\cos \delta}\left(\frac{1}{R+\tilde{d}}-\frac{\tilde{y}^{2}}{R+\tilde{d}} D_{11}\right)-\frac{1}{\cos ^{2} \delta}\left(\frac{\cos \delta}{R}+q Y_{11} \sin \delta-\tilde{y} D_{11} \sin \delta\right) \\
& =-\frac{1}{\cos \delta}\left(\tilde{d}+\frac{\tilde{y}^{2}}{R+\tilde{d}}\right) D_{11}-\frac{\sin \delta}{\cos ^{2} \delta}\left(q Y_{11}-\tilde{y} D_{11}\right)=J_{1} \\
& J_{6}^{y}=\frac{\partial I_{4}}{\partial y}=\frac{\sin \delta}{\cos \delta} \frac{\partial}{\partial y}\left(\frac{\xi}{R+\tilde{d}}\right)+\frac{2}{\cos ^{2} \delta} \frac{\partial}{\partial y} \tan ^{-1} \frac{\eta(X+q \cos \delta)+X(R+X) \sin \delta}{\xi(R+X) \cos \delta}=-\frac{\sin \delta}{\cos \delta} \frac{\xi \tilde{y}}{R+\tilde{d}} D_{11}+\frac{\xi}{\cos ^{2} \delta}\left(D_{11}-Y_{11} \sin \delta\right)=J_{3} \\
& J_{3}^{y}=\frac{\partial I_{2}}{\partial y}=\frac{\partial}{\partial y} \ln (R+\tilde{d})+\frac{\partial I_{3}}{\partial y} \sin \delta=\tilde{y} D_{11}-\frac{\sin \delta}{\cos \delta}\left(\tilde{d}+\frac{\tilde{y}^{2}}{R+\tilde{d}}\right) D_{11}-\frac{\sin ^{2} \delta}{\cos ^{2} \delta}\left(q Y_{11}-\tilde{y} D_{11}\right) \\
& =-\frac{\sin \delta}{\cos \delta}\left(\tilde{d}+\frac{\tilde{y}^{2}}{R+\tilde{d}}\right) D_{11}-\frac{\sin ^{2} \delta}{\cos ^{2} \delta} q Y_{11}+\frac{1}{\cos ^{2} \delta} \tilde{y} D_{11}=q Y_{11}-\frac{\sin \delta}{\cos \delta}\left(\tilde{d}+\frac{\tilde{y}^{2}}{R+\tilde{d}}\right) D_{11}-\frac{1}{\cos ^{2} \delta}\left(q Y_{11}-\tilde{y} D_{11}\right)=q Y_{11}-J_{6} \\
& J_{1}^{y}=-\frac{\partial I_{1}}{\partial y}=\frac{\partial}{\partial y}\left(\frac{\xi}{R+\tilde{d}}\right) \cos \delta+\frac{\partial I_{4}}{\partial y} \sin \delta=-\frac{\xi \tilde{y}}{R+\tilde{d}} D_{11} \cos \delta-\frac{\sin ^{2} \delta}{\cos \delta} \frac{\xi \tilde{y}}{R+\tilde{d}} D_{11}+\frac{\xi \sin \delta}{\cos ^{2} \delta}\left(D_{11}-Y_{11} \sin \delta\right) \\
& =-\frac{1}{\cos \delta} \frac{\xi \tilde{y}}{R+\tilde{d}} D_{11}-\frac{\sin ^{2} \delta}{\cos ^{2} \delta} \xi Y_{11}+\frac{\sin \delta}{\cos ^{2} \delta} \xi D_{11}=\xi Y_{11}-\frac{1}{\cos \delta} \frac{\xi \tilde{y}}{R+\tilde{d}} D_{11}-\frac{\xi}{\cos ^{2} \delta}\left(Y_{11}-D_{11} \sin \delta\right)=\xi Y_{11}+J_{4}
\end{aligned}
$$

For z-derivative
$J_{2}^{z}=\frac{\partial}{\partial z}\left(\frac{\tilde{y}}{R+\tilde{d}}\right)=\tilde{y} D_{11}$
$J_{5}^{Z}=\frac{\partial}{\partial z}\left(\frac{\xi}{R+\tilde{d}}\right)=\xi D_{11}$
$J_{4}^{z}=-\frac{\partial I_{3}}{\partial z}=-\frac{1}{\cos \delta} \frac{\partial}{\partial z}\left(\frac{\tilde{y}}{R+\tilde{d}}\right)+\frac{1}{\cos ^{2} \delta} \frac{\partial}{\partial z}[\ln (R+\eta)-\sin \delta \ln (R+\tilde{d})]=-\frac{1}{\cos \delta}\left(\tilde{y} D_{11}-q Y_{11}\right) \equiv K_{3}$
$J_{6}^{z}=-\frac{\partial I_{4}}{\partial z}=-\frac{\sin \delta}{\cos \delta} \frac{\partial}{\partial z}\left(\frac{\xi}{R+\tilde{d}}\right)-\frac{2}{\cos ^{2} \delta} \frac{\partial}{\partial z} \tan ^{-1} \frac{\eta(X+q \cos \delta)+X(R+X) \sin \delta}{\xi(R+X) \cos \delta}=\frac{\xi}{\cos \delta}\left(Y_{11}-D_{11} \sin \delta\right) \equiv K_{4}$
$J_{3}^{z}=-\frac{\partial I_{2}}{\partial z}=-\frac{\partial}{\partial z} \ln (R+\tilde{d})-\frac{\partial I_{3}}{\partial z} \sin \delta=\frac{1}{R}-\frac{\sin \delta}{\cos \delta}\left(\tilde{y} D_{11}-q Y_{11}\right) \equiv K_{2}$
$J_{1}^{z}=-\frac{\partial I_{1}}{\partial z}=\frac{\partial}{\partial z}\left(\frac{\xi}{R+\tilde{d}}\right) \cos \delta+\frac{\partial I_{4}}{\partial z} \sin \delta=\xi D_{11} \cos \delta-\frac{\xi \sin \delta}{\cos \delta}\left(Y_{11}-D_{11} \sin \delta\right)=\frac{\xi}{\cos \delta}\left(D_{11}-Y_{11} \sin \delta\right) \equiv K_{1}$

Namely

$$
\begin{array}{lll}
J_{1}^{x}=J_{1}=-\frac{1}{\cos \delta}\left(\tilde{d}+\frac{\tilde{y}^{2}}{R+\tilde{d}}\right) D_{11}-\frac{\sin \delta}{\cos ^{2} \delta}\left(q Y_{11}-\tilde{y} D_{11}\right) & J_{1}^{y}=\xi Y_{11}+J_{4} & J_{1}^{z}=K_{1}=\frac{\xi}{\cos \delta}\left(D_{11}-Y_{11} \sin \delta\right) \\
J_{2}^{x}=J_{2}=\frac{\xi \tilde{y}}{R+\tilde{d}} D_{11} & J_{2}^{y}=\frac{1}{R}+J_{5} & J_{2}^{z}=\tilde{y} D_{11} \\
J_{3}^{x}=J_{3}=-\frac{\sin \delta}{\cos \delta} \frac{\xi \tilde{y}}{R+\tilde{d}} D_{11}+\frac{\xi}{\cos ^{2} \delta}\left(D_{11}-Y_{11} \sin \delta\right) & J_{3}^{y}=q Y_{11}-J_{6} & J_{3}^{z}=K_{2}=\frac{1}{R}-\frac{\sin \delta}{\cos \delta}\left(\tilde{y} D_{11}-q Y_{11}\right) \\
J_{4}^{x}=J_{4}=-\frac{1}{\cos \delta} \frac{\tilde{\xi}}{R+\tilde{d}} D_{11}-\frac{\xi}{\cos ^{2} \delta}\left(Y_{11}-D_{11} \sin \delta\right) & J_{4}^{y}=J_{1} & J_{4}^{z}=K_{3}=-\frac{1}{\cos \delta}\left(\tilde{y} D_{11}-q Y_{11}\right) \\
J_{5}^{x}=J_{5}=-\left(\tilde{d}+\frac{\tilde{y}^{2}}{R+\tilde{d}}\right) D_{11} & J_{5}^{y}=J_{2} & J_{5}^{z}=\xi D_{11} \\
J_{6}^{x}=J_{6}=\frac{\sin \delta}{\cos \delta}\left(\tilde{d}+\frac{\tilde{y}^{2}}{R+\tilde{d}}\right) D_{11}+\frac{1}{\cos ^{2} \delta}\left(q Y_{11}-\tilde{y} D_{11}\right) & J_{6}^{y}=J_{3} & J_{6}^{z}=K_{4}=\frac{\xi}{\cos \delta}\left(Y_{11}-D_{11} \sin \delta\right)
\end{array}
$$

And there are following inter-relations

$$
\begin{array}{lll}
J_{1}=J_{5} \cos \delta-J_{6} \sin \delta & J_{3}=\frac{1}{\cos \delta}\left(K_{1}-J_{2} \sin \delta\right) & K_{2}=\frac{1}{R}+K_{3} \sin \delta \\
J_{4}=-\xi Y_{11}-J_{2} \cos \delta+J_{3} \sin \delta & J_{6}=\frac{1}{\cos \delta}\left(K_{3}-J_{5} \sin \delta\right) & K_{4}=\xi Y_{11} \cos \delta-K_{1} \sin \delta
\end{array}
$$

(b) In case of $\cos \delta=0 \quad(\sin \delta= \pm 1, \tilde{y}=q \sin \delta= \pm q, \tilde{d}=\eta \sin \delta= \pm \eta)$

In this case, $Y_{11}=D_{11} \sin \delta= \pm D_{11}$ because $\frac{1}{R(R+\eta)}=\frac{1}{R(R-\tilde{d})}=-\frac{1}{R(R+\tilde{d})}+\frac{2}{R^{2}-\eta^{2}} \quad$ when $\sin \delta=-1$
For x-derivative
$J_{2}^{x}=\frac{\partial}{\partial x}\left(-\frac{\tilde{y}}{R+\tilde{d}}\right)=\frac{\xi \tilde{y}}{R+\tilde{d}} D_{11} \equiv J_{2}$
$J_{5}^{x}=\frac{\partial}{\partial x}\left(-\frac{\xi}{R+\tilde{d}}\right)=-\left(\tilde{d}+\frac{\tilde{y}^{2}}{R+\tilde{d}}\right) D_{11}=-\frac{(R+\tilde{d}) \tilde{d}+q^{2}}{R(R+\tilde{d})^{2}}=-\frac{1}{R+\tilde{d}}\left(1-\xi^{2} D_{11}\right) \equiv J_{5}$

$$
\begin{aligned}
J_{4}^{x}=\frac{\partial I_{3}}{\partial x} & =\frac{1}{2} \frac{\partial}{\partial x}\left[\frac{\eta}{R+\tilde{d}}+\frac{\tilde{y} q}{(R+\tilde{d})^{2}}-\ln (R+\eta)\right]=-\frac{1}{2}\left[\frac{\xi \eta}{R+\tilde{d}} D_{11}+\frac{2 \xi \tilde{y} q}{(R+\tilde{d})^{2}} D_{11}+\xi Y_{11}\right]=-\xi Y_{11}-\frac{\xi \sin \delta}{2}\left[\frac{\tilde{d}}{R+\tilde{d}}+\frac{2 q^{2}}{(R+\tilde{d})^{2}}-1\right] D_{11} \\
& =-\xi Y_{11}-\frac{\xi \sin \delta}{2}\left[\frac{\tilde{d}}{R(R+\tilde{d})^{2}}-\frac{1}{R(R+\tilde{d})}+\frac{2 q^{2}}{(R+\tilde{d})^{2}} D_{11}\right]=-\xi Y_{11}+\frac{\xi \sin \delta}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-q^{2} D_{11}\right) \equiv J_{4} \\
J_{6}^{x}=\frac{\partial I_{4}}{\partial x} & =\frac{1}{2} \frac{\partial}{\partial x} \frac{\xi \tilde{y}}{(R+\tilde{d})^{2}}=\frac{\tilde{y}}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-\xi^{2} D_{11}\right) \equiv J_{6} \\
J_{3}^{x}=\frac{\partial I_{2}}{\partial x} & =\frac{\partial}{\partial x} \ln (R+\tilde{d})+\frac{\partial I_{3}}{\partial x} \sin \delta=\xi D_{11}-\xi Y_{11} \sin \delta+\frac{\xi}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-q^{2} D_{11}\right)=\frac{\xi}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-q^{2} D_{11}\right) \equiv J_{3} \\
J_{1}^{x}=\frac{\partial I_{1}}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{\xi}{R+\tilde{d}}\right) \cos \delta-\frac{\partial I_{4}}{\partial x} \sin \delta=-\frac{\tilde{y}}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-\xi^{2} D_{11}\right) \sin \delta=-\frac{q}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-\xi^{2} D_{11}\right) \equiv J_{1}
\end{aligned}
$$

For y-derivative

$$
\begin{aligned}
& J_{2}^{y}=\frac{\partial}{\partial y}\left(\frac{\tilde{y}}{R+\tilde{d}}\right)=\frac{1}{R+\tilde{d}}-\frac{\tilde{y}^{2}}{R+\tilde{d}} D_{11}=\frac{1}{R+\tilde{d}}+\left(\tilde{d} D_{11}+J_{5}\right)=\frac{1}{R+\tilde{d}}+\frac{\tilde{d}}{R(R+\tilde{d})}+J_{5}=\frac{1}{R}+J_{5} \\
& J_{5}^{y}=\frac{\partial}{\partial y}\left(-\frac{\xi}{R+\tilde{d}}\right)=\frac{\xi \tilde{y}}{R+\tilde{d}} D_{11}=J_{2} \\
& J_{4}^{y}=\frac{\partial I_{3}}{\partial y}=\frac{1}{2}\left\{\frac{\cos \delta}{R+\tilde{d}}-\frac{\tilde{y} \eta}{R+\tilde{d}} D_{11}+\frac{\tilde{y} \sin \delta}{(R+\tilde{d})^{2}}+\frac{q\left(1-2 \tilde{y}^{2} D_{11}\right)}{(R+\tilde{d})^{2}}-\frac{\cos \delta}{R}-q Y_{11} \sin \delta\right\}=\frac{1}{2}\left\{-\frac{\tilde{d} q}{R(R+\tilde{d})^{2}}+\frac{2 q}{(R+\tilde{d})^{2}}-\frac{2 q^{3}}{R(R+\tilde{d})^{3}}-\frac{q}{R(R+\tilde{d})}\right\} \\
& \quad=\frac{q\left[-\tilde{d}(R+\tilde{d})+2 R(R+\tilde{d})-2 q^{2}-(R+\tilde{d})^{2}\right]}{2 R(R+\tilde{d})^{3}}=\frac{q\left[-R(R+\tilde{d})+2\left(R^{2}-\tilde{d}^{2}-q^{2}\right)\right]}{2 R(R+\tilde{d})^{3}}=-\frac{q}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-\xi^{2} D_{11}\right)=J_{1} \\
& J_{6}^{y}=\frac{\partial I_{4}}{\partial y}=\frac{1}{2} \frac{\partial}{\partial y} \frac{\xi \tilde{y}}{(R+\tilde{d})^{2}}=\frac{\xi}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-q^{2} D_{11}\right)=J_{3} \\
& J_{3}^{y}=\frac{\partial I_{2}}{\partial y}=\frac{\partial}{\partial y} \ln (R+\tilde{d})+\frac{\partial I_{3}}{\partial y} \sin \delta=\tilde{y} D_{11}-\frac{q}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-\xi^{2} D_{11}\right) \sin \delta=\tilde{y} D_{11}-\frac{\tilde{y}}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-\xi^{2} D_{11}\right)=q Y_{11}-\frac{2 q}{R^{2}-\eta^{2}}-J_{6} \\
& J_{1}^{y}=-\frac{\partial I_{1}}{\partial y}=\frac{\partial}{\partial y}\left(\frac{\xi}{R+\tilde{d}}\right) \cos \delta+\frac{\partial I_{4}}{\partial y} \sin \delta=\frac{\tilde{\xi}}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-q^{2} D_{11}\right) \sin \delta=\xi Y_{11}+J_{4}
\end{aligned}
$$

For z-derivative

$$
\begin{aligned}
& \begin{aligned}
& J_{2}^{z}= \frac{\partial}{\partial z}\left(\frac{\tilde{y}}{R+\tilde{d}}\right)=\tilde{y} D_{11} \\
& \begin{aligned}
J_{5}^{z} & =\frac{\partial}{\partial z}\left(\frac{\xi}{R+\tilde{d}}\right)=\xi D_{11} \\
J_{4}^{z}= & -\frac{\partial I_{3}}{\partial z}
\end{aligned}=-\frac{1}{2}\left\{-\frac{\sin \delta}{R+\tilde{d}}+\eta D_{11}+\frac{\tilde{y}}{(R+\tilde{d})^{2}}\left(\cos \delta+\frac{2 q}{R}\right)+\frac{\sin \delta}{R}-q Y_{11} \cos \delta\right\}=-\frac{1}{2}\left(\frac{\sin \delta}{R}-\frac{\sin \delta}{R+\tilde{d}}+\frac{\eta}{R(R+\tilde{d})}+\frac{2 \tilde{y} q}{R(R+\tilde{d})^{2}}\right\} \\
&=-\frac{1}{2}\left\{\frac{2 \tilde{d} \sin \delta}{R(R+\tilde{d})}+\frac{2 q^{2} \sin \delta}{R(R+\tilde{d})^{2}}\right\}=-\frac{(R+\tilde{d}) \tilde{d}+q^{2}}{R(R+\tilde{d})^{2}} \sin \delta=-\frac{\sin \delta}{R+\tilde{d}}\left(1-\xi^{2} D_{11}\right) \equiv K_{3}
\end{aligned} \\
& \begin{aligned}
J_{6}^{z}=-\frac{\partial I_{4}}{\partial z} & =-\frac{1}{2} \frac{\partial}{\partial z} \frac{\xi \tilde{y}}{(R+\tilde{d})^{2}}=-\frac{\xi \tilde{y}}{R+\tilde{d}} D_{11} \equiv K_{4}
\end{aligned} \\
& \begin{array}{l}
J_{3}^{z}=-\frac{\partial I_{2}}{\partial z}=-\frac{\partial}{\partial z} \ln (R+\tilde{d})-\frac{\partial I_{3}}{\partial z} \sin \delta=\frac{1}{R}-\frac{1}{R+\tilde{d}}\left(1-\xi^{2} D_{11}\right)=\left(\tilde{d}+\frac{\xi^{2}}{R+\tilde{d}}\right) D_{11} \equiv K_{2} \\
J_{1}^{z}=-\frac{\partial I_{1}}{\partial z}=\frac{\partial}{\partial z}\left(\frac{\xi}{R+\tilde{d}}\right) \cos \delta+\frac{\partial I_{4}}{\partial z} \sin \delta=\frac{\xi \tilde{y}}{R+\tilde{d}} D_{11} \sin \delta=\frac{\xi q}{R+\tilde{d}} D_{11} \equiv K_{1}
\end{array}
\end{aligned}
$$

Namely

$$
\begin{array}{lll}
J_{1}^{x}=J_{1}=-\frac{q}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-\xi^{2} D_{11}\right) & J_{1}^{y}=\xi Y_{11}+J_{4} & J_{1}^{z}=K_{1}=\frac{\xi q}{R+\tilde{d}} D_{11} \\
J_{2}^{x}=J_{2}=\frac{\xi \tilde{y}}{R+\tilde{d}} D_{11} & J_{2}^{y}=\frac{1}{R}+J_{5} & J_{2}^{z}=\tilde{y} D_{11} \\
J_{3}^{x}=J_{3}=\frac{\xi}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-q^{2} D_{11}\right) & J_{3}^{y}=q Y_{11}-J_{6} & J_{3}^{z}=K_{2}=\left(\tilde{d}+\frac{\xi^{2}}{R+\tilde{d}}\right) D_{11} \\
J_{4}^{x}=J_{4}=-\xi Y_{11}+\frac{\xi \sin \delta}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-q^{2} D_{11}\right) & J_{4}^{y}=J_{1} & J_{4}^{z}=K_{3}=-\frac{\sin \delta}{R+\tilde{d}}\left(1-\xi^{2} D_{11}\right) \\
J_{5}^{x}=J_{5}=-\frac{1}{R+\tilde{d}}\left(1-\xi^{2} D_{11}\right) & J_{5}^{y}=J_{2} & J_{5}^{z}=\xi D_{11} \\
J_{6}^{x}=J_{6}=\frac{\tilde{y}}{(R+\tilde{d})^{2}}\left(\frac{1}{2}-\xi^{2} D_{11}\right) & J_{6}^{y}=J_{3} & J_{6}^{z}=K_{4}=-\frac{\xi \tilde{y}}{R+\tilde{d}} D_{11}
\end{array}
$$

And there are following inter-relations

$$
\begin{array}{lll}
J_{1}=J_{5} \cos \delta-J_{6} \sin \delta & K_{1}=J_{2} \sin \delta & K_{2}=\frac{1}{R}+K_{3} \sin \delta \\
J_{4}=-\xi Y_{11}-J_{2} \cos \delta+J_{3} \sin \delta & K_{3}=J_{5} \sin \delta & K_{4}=\xi Y_{11} \cos \delta-K_{1} \sin \delta
\end{array}
$$

Appendix : Table of Differentiation of Integrals

\boldsymbol{f}	$\boldsymbol{\partial f} / \boldsymbol{\partial} \boldsymbol{x}$	$\boldsymbol{\partial f} / \boldsymbol{\partial} \boldsymbol{y}$	$\boldsymbol{\partial} \boldsymbol{f} / \boldsymbol{\partial z}$
$\xi(\leftrightarrow x)$	1	0	0
$\eta(\leftrightarrow p=y \cos \delta+(c-z) \sin \delta)$	0	$\cos \delta$	$-\sin \delta$
$q(\leftrightarrow q=y \sin \delta-(c-z) \cos \delta)$	0	$\sin \delta$	$\cos \delta$
$\tilde{y}(=\eta \cos \delta+q \sin \delta)$	0	1	0
$\tilde{d}(=\eta \sin \delta-q \cos \delta)$	0	0	-1
$h(=q \cos \delta-z)$	0	$\sin \delta \cos \delta$	$-\sin ^{2} \delta$
$\tilde{c}(=\tilde{d}+\mathrm{z}=\eta \sin \delta-h)$	0	0	0
$X\left(=\sqrt{\xi^{2}+q^{2}}\right)$	ξ / X	$q \sin \delta / X$	$q \cos \delta / X$
$R\left(=\sqrt{\xi^{2}+\eta^{2}+q^{2}}=\sqrt{\xi^{2}+\tilde{y}^{2}+\tilde{d}^{2}}\right)$	ξ / R	\tilde{y} / R	$-\tilde{d} / R$

f	$\partial f / \partial x$	$\partial f / \partial y$	$\partial f / \partial z$
$1 / R$	$-\xi / R^{3}$	$-\tilde{y} / R^{3}$	\tilde{d} / R^{3}
$1 / R^{3}$	$-3 \xi / R^{5}$	$-3 \tilde{y} / R^{5}$	$3 \tilde{d} / R^{5}$
q / R	$-\xi q / R^{3}$	$\frac{\sin \delta}{R}-\frac{\tilde{y} q}{R^{3}}$	$\frac{\cos \delta}{R}+\frac{\tilde{d} q}{R^{3}}$
η / R^{3}	$-3 \xi \eta / R^{5}$	$\frac{\cos \delta}{R^{3}}-\frac{3 \tilde{y} \eta}{R^{5}}$	$-\frac{\sin \delta}{R^{3}}+\frac{3 \tilde{d} \eta}{R^{5}}$
q / R^{3}	$-3 \xi q / R^{5}$	$\frac{\sin \delta}{R^{3}}-\frac{3 \tilde{y} q}{R^{5}}$	$\frac{\cos \delta}{R^{3}}+\frac{3 \tilde{d} q}{R^{5}}$
$\ln (R+\xi)$	1/R	$\tilde{y} X_{11}$	$-\tilde{d} X_{11}$
$\ln (R+\eta)$	ξY_{11}	$\frac{\cos \delta}{R}+q Y_{11} \sin \delta$	$-\frac{\sin \delta}{R}+q Y_{11} \cos \delta$
$\ln (R+\tilde{d})$	ξD_{11}	$\tilde{y} D_{11}$	$-1 / R$
X_{11}	$-1 / R^{3}$	$-\tilde{y} X_{32}$	$\tilde{d} X_{32}$
X_{32}	$-3 / R^{5}$	$-\tilde{y} X_{53}$	$\tilde{d} X_{53}$
ηX_{11}	$-\eta / R^{3}$	$X_{11} \cos \delta-\tilde{y} \eta X_{32}$	$-X_{11} \sin \delta+\tilde{d} \eta X_{32}$
$\tilde{y} X_{11}$	$-\tilde{y} / R^{3}$	$X_{11}-\tilde{y}^{2} X_{32}$	$\tilde{y} \tilde{d} X_{32}$
$\tilde{d} X_{11}$	$-\tilde{d} / R^{3}$	$-\tilde{y} \tilde{d} X_{32}$	$-X_{11}+\tilde{d}^{2} X_{32}$
$\eta q X_{11}$	$-\eta q / R^{3}$	$(2 \eta \sin \delta-\tilde{d}) X_{11}-\tilde{y} \eta q X_{32}$	$(2 \eta \cos \delta-\tilde{y}) X_{11}+\tilde{d} \eta q X_{32}$
$q^{2} X_{11}$	$-q^{2} / R^{3}$	$q\left(2 X_{11} \sin \delta-\tilde{y} q X_{32}\right)$	$q\left(2 X_{11} \cos \delta+\tilde{d} q X_{32}\right)$
$\eta q X_{32}$	$-3 \eta q / R^{5}$	$(2 \eta \sin \delta-\tilde{d}) X_{32}-\tilde{y} \eta q X_{53}$	$(2 \eta \cos \delta-\tilde{y}) X_{32}+\tilde{d} \eta q X_{53}$
$q^{2} X_{32}$	$-3 q^{2} / R^{5}$	$q\left(2 X_{32} \sin \delta-\tilde{y} q X_{53}\right)$	$q\left(2 X_{32} \cos \delta+\tilde{d} q X_{53}\right)$
$\eta q^{2} X_{32}$	$-3 \eta q^{2} / R^{5}$	$q\left[(3 \eta \sin \delta-\widetilde{d}) X_{32}-\widetilde{y} \eta q X_{53}\right]$	$-q\left[(3 \eta \cos \delta-\tilde{y}) X_{32}-\tilde{d} \eta q X_{53}\right]$
Y_{11}	$-\xi Y_{32}$	$-\frac{\cos \delta}{R^{3}}-q Y_{32} \sin \delta \quad(* 1)$	$\frac{\sin \delta}{R^{3}}-q Y_{32} \cos \delta$
Y_{32}	$-\xi Y_{53}$	$-\frac{3 \cos \delta}{R^{5}}-q Y_{53} \sin \delta \quad(* 2)$	$\frac{3 \sin \delta}{R^{5}}-q Y_{53} \cos \delta$
ξY_{11}	Y_{0}	$-\xi\left(\frac{\cos \delta}{R^{3}}+q Y_{32} \sin \delta\right)$	$\xi\left(\frac{\sin \delta}{R^{3}}-q Y_{32} \cos \delta\right)$
$q Y_{11}$	$-\xi q Y_{32}$	$\begin{equation*} \frac{\tilde{d}}{R^{3}}-Y_{0} \sin \delta \tag{*3} \end{equation*}$	$\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta$
$\xi q Y_{11}$	$q Y_{0}$	$\xi\left(\frac{\tilde{d}}{R^{3}}-Y_{0} \sin \delta\right)$	$\xi\left(\frac{\tilde{y}}{R^{3}}-Y_{0} \cos \delta\right)$
$q^{2} Y_{11}$	$-\xi q^{2} Y_{32}$	$q\left(\frac{\tilde{d}}{R^{3}}+\xi^{2} Y_{32} \sin \delta\right) \quad(* 4)$	$q\left(\frac{\tilde{y}}{R^{3}}+\xi^{2} Y_{32} \cos \delta\right)$
	As an alternate, $\quad(2 \eta \sin \delta-\tilde{d})=(\tilde{d}+2 q \cos \delta)$ and $(2 \eta \cos \delta-\tilde{y})=(\tilde{y}-2 q \sin \delta)$		

f	$\partial f / \partial x$	$\partial f / \partial y$	$\partial f / \partial z$
Z_{32}	$-\xi Z_{53}$	$-\frac{3 \tilde{c}}{R^{5}} \cos \delta-\left(Y_{32} \cos \delta+q Z_{53}\right) \sin \delta \quad(* 5)$	$\frac{3 \tilde{c}}{R^{5}} \sin \delta+Y_{32} \sin ^{2} \delta-q Z_{53} \cos \delta(* 5)$
$\xi^{2} Z_{32}$	$\xi\left(Z_{32}+Z_{0}\right)$	$-\xi^{2}\left\{\frac{3 \tilde{c}}{R^{5}} \cos \delta+\left(Y_{32} \cos \delta+q Z_{53}\right) \sin \delta\right\}$	$\xi^{2}\left\{\frac{3 \tilde{c}}{R^{5}} \sin \delta+Y_{32} \sin ^{2} \delta-q Z_{53} \cos \delta\right\}$
$q^{2} Z_{32}$	$-\xi q^{2} Z_{53}$	$q\left\{\frac{3 \tilde{c} \tilde{d}}{R^{5}}-\left(z Y_{32}+Z_{0}\right) \sin \delta\right\} \quad(* 6)$	$q\left\{\frac{3 \tilde{c} \tilde{y}}{R^{5}}+q Y_{32}-\left(z Y_{32}+Z_{0}\right) \cos \delta\right\}$
$\xi q Z_{32}$	$q Z_{0}$	$\xi\left\{\frac{3 \tilde{c} \tilde{d}}{R^{5}}-\left(z Y_{32}+Z_{32}+Z_{0}\right) \sin \delta\right\}(* 7)$	$\xi\left\{\frac{3 \tilde{c}^{\tilde{y}} R^{5}}{}+q Y_{32}-\left(z Y_{32}+Z_{32}+Z_{0}\right) \cos \delta\right\}$
$\frac{1}{R+\tilde{d}}$	$-\frac{\xi}{R+\tilde{d}} D_{11}$	$-\frac{\tilde{y}}{R+\tilde{d}} D_{11}$	D_{11}
$\frac{\xi}{R+\tilde{d}}$	$\left(\tilde{d}+\frac{\tilde{y}^{2}}{R+\tilde{d}}\right) D_{11}(* 8)$	$-\frac{\zeta \tilde{y}}{R+\tilde{d}} D_{11}$	ξD_{11}
$\frac{\eta}{R+\tilde{d}}$	$-\frac{\xi \eta}{R+\tilde{d}} D_{11}$	$\frac{\cos \delta}{R+\tilde{d}}-\frac{\tilde{y} \eta}{R+\tilde{d}} D_{11}$	$-\frac{\sin \delta}{R+\tilde{d}}+\eta D_{11}$
$\frac{\tilde{y}}{R+\tilde{d}}$	$-\frac{\xi \tilde{y}}{R+\tilde{d}} D_{11}$	$\frac{1}{R+\tilde{d}}-\frac{\tilde{y}^{2}}{R+\tilde{d}} D_{11}$	$\tilde{y} D_{11}$
$\frac{\zeta \tilde{y}}{(R+\tilde{d})^{2}}$	$\frac{\tilde{y}\left(1-2 \xi^{2} D_{11}\right)}{(R+\tilde{d})^{2}}$	$\frac{\xi\left(1-2 \tilde{y}^{2} D_{11}\right)}{(R+\tilde{d})^{2}}$	$\frac{2 \xi \tilde{y}}{R+\tilde{d}} D_{11}$
$\frac{\tilde{y} q}{(R+\tilde{d})^{2}}$	$-\frac{2 \xi \tilde{y} q}{(R+\tilde{d})^{2}} D_{11}$	$\frac{\tilde{y} \sin \delta+q\left(1-2 \tilde{y}^{2} D_{11}\right)}{(R+\tilde{d})^{2}}$	$\frac{\tilde{y}}{(R+\tilde{d})^{2}}\left(\cos \delta+\frac{2 q}{R}\right)$
$\theta=\tan ^{-1} \frac{\xi \eta}{q R}$	$-q Y_{11} \quad(* 9)$	$\tilde{d} X_{11}+\xi Y_{11} \sin \delta \quad(* 9)$	$\tilde{y} X_{11}+\xi Y_{11} \cos \delta$
θ	$\frac{1}{2}\left(q Y_{11}-\tilde{y} D_{11}\right)(* 10)$	$\frac{\xi}{2}\left(D_{11}-Y_{11} \sin \delta\right) \quad(* 10)$	$-\frac{1}{2} \xi Y_{11} \cos \delta \quad(* 10)$
$\tan ^{-1} \frac{\eta(X+q \cos \delta)+X(R+X) \sin \delta}{\xi(R+X) \cos \delta}$			$h=q \cos \delta-z \quad \tilde{c}=\eta \sin \delta-h$
$D_{11}=\frac{1}{R(R+}$	$\begin{aligned} X_{11} & =\frac{1}{R(R+\xi)} \\ Y_{11} & =\frac{1}{R(R+\eta)} \end{aligned}$	$\begin{array}{ll} X_{32}=\frac{2 R+\xi}{R^{3}(R+\xi)^{2}} & X_{53}=\frac{8 R^{2}+9 R \xi+3 \xi^{2}}{R^{5}(R+\xi)^{3}} \\ Y_{32}=\frac{2 R+\eta}{R^{3}(R+\eta)^{2}} & Y_{53}=\frac{8 R^{2}+9 R \eta+3 \eta^{2}}{R^{5}(R+\eta)^{3}} \end{array}$	$Z_{32}=\frac{\sin \delta}{R^{3}}-h Y_{32} \quad Y_{0}=Y_{11}-\xi^{2} Y_{32}$

(*1) $\frac{\partial}{\partial y} Y_{11}=\frac{-1}{R^{2}(R+\eta)^{2}}\left[\frac{\tilde{y}}{R}(R+\eta)+R\left(\frac{\tilde{y}}{R}+\cos \delta\right)\right]=-\frac{\tilde{y}(2 R+\eta)+R^{2} \cos \delta}{R^{3}(R+\eta)^{2}}=-\tilde{y} Y_{32}-\frac{\cos \delta}{R(R+\eta)^{2}}$

$$
=-(\eta \cos \delta+q \sin \delta) Y_{32}-\frac{\cos \delta}{R(R+\eta)^{2}}=-q Y_{32} \sin \delta-\left(\eta Y_{32}+\frac{1}{R(R+\eta)^{2}}\right) \cos \delta=-q Y_{32} \sin \delta-\frac{1}{R^{3}} \cos \delta
$$

(*2) $\frac{\partial}{\partial y} Y_{32}=\frac{\left(2 \frac{\tilde{y}}{R}+\cos \delta\right) R^{3}(R+\eta)^{2}-(2 R+\eta)\left[3 R^{2} \frac{\tilde{y}}{R}(R+\eta)^{2}+2 R^{3}(R+\eta)\left(\frac{\tilde{y}}{R}+\cos \delta\right)\right]}{R^{6}(R+\eta)^{4}}=\frac{-\tilde{y}\left(8 R^{2}+9 R \eta+3 \eta^{2}\right)-R^{2}(3 R+\eta) \cos \delta}{R^{5}(R+\eta)^{3}}$

$$
=-(\eta \cos \delta+q \sin \delta) Y_{53}-\frac{3 R+\eta}{R^{3}(R+\eta)^{3}} \cos \delta=-q Y_{53} \sin \delta-\left(\eta Y_{53}+\frac{3 R+\eta}{R^{3}(R+\eta)^{3}}\right) \cos \delta=-q Y_{53} \sin \delta-\frac{3}{R^{5}} \cos \delta
$$

(*3) Since $\left(R^{2}-\eta^{2}\right) \frac{2 R+\eta}{R^{3}(R+\eta)^{2}}=-\frac{\eta}{R^{3}}+\frac{2}{R(R+\eta)} \rightarrow\left(\xi^{2}+q^{2}\right) Y_{32}=-\frac{\eta}{R^{3}}+2 Y_{11} \rightarrow\left(Y_{11}-\xi^{2} Y_{32}\right)+\left(Y_{11}-q^{2} Y_{32}\right)=\frac{\eta}{R^{3}}$

$$
\frac{\partial}{\partial y} q Y_{11}=Y_{11} \sin \delta-q\left(\frac{\cos \delta}{R^{3}}+q Y_{32} \sin \delta\right)=\left(Y_{11}-q^{2} Y_{32}\right) \sin \delta-\frac{q}{R^{3}} \cos \delta=\left[\frac{\eta}{R^{3}}-\left(Y_{11}-\xi^{2} Y_{32}\right)\right] \sin \delta-\frac{q}{R^{3}} \cos \delta
$$

(* 4) $\frac{\partial}{\partial y} q^{2} Y_{11}=2 q Y_{11} \sin \delta-q^{2}\left(\frac{\cos \delta}{R^{3}}+q Y_{32} \sin \delta\right)=q\left(2 Y_{11}-q^{2} Y_{32}\right) \sin \delta-\frac{q^{2}}{R^{3}} \cos \delta=q\left(\frac{\eta}{R^{3}}+\xi^{2} Y_{32}\right) \sin \delta-\frac{q^{2}}{R^{3}} \cos \delta$

$$
(* 5)\left\{\begin{aligned}
\frac{\partial}{\partial y} Z_{32} & =-\left(\frac{3 \tilde{y}}{R^{5}}+Y_{32} \cos \delta\right) \sin \delta+h\left(\frac{3 \cos \delta}{R^{5}}+q Y_{53} \sin \delta\right)=-\frac{3(\tilde{y} \sin \delta-h \cos \delta)}{R^{5}}-Y_{32} \sin \delta \cos \delta+q h Y_{53} \sin \delta \\
& =-\frac{3 \tilde{c}}{R^{5}} \cos \delta-\frac{3 q}{R^{5}} \sin ^{2} \delta-Y_{32} \sin \delta \cos \delta+q h Y_{53} \sin \delta=-\frac{3 \tilde{c}}{R^{5}} \cos \delta-Y_{32} \sin \delta \cos \delta-q \sin \delta\left(\frac{3 \sin \delta}{R^{5}}-h\right) \\
\frac{\partial}{\partial z} Z_{32} & =\left(\frac{3 \tilde{d}}{R^{5}}+Y_{32} \sin \delta\right) \sin \delta-h\left(\frac{3 \sin \delta}{R^{5}}-q Y_{53} \cos \delta\right)=\frac{3(\tilde{d}-h)}{R^{5}} \sin \delta+Y_{32} \sin ^{2} \delta+q h Y_{53} \cos \delta \\
& =\frac{3 \tilde{c}}{R^{5}} \sin \delta-\frac{3 q}{R^{5}} \sin \delta \cos \delta+Y_{32} \sin ^{2} \delta+q h Y_{53} \cos \delta=\frac{3 \tilde{c}}{R^{5}} \sin \delta+Y_{32} \sin ^{2} \delta-q \cos \delta\left(\frac{3 \sin \delta}{R^{5}}-h Y_{53}\right)
\end{aligned}\right.
$$

(*6) Since $\quad\left(R^{2}-\eta^{2}\right) \frac{8 R^{2}+9 R \eta+3 \eta^{2}}{R^{5}(R+\eta)^{3}}=-\frac{3 \eta}{R^{5}}+\frac{4(2 R+\eta)}{R^{3}(R+\eta)^{2}} \quad \rightarrow \quad\left(\xi^{2}+q^{2}\right) Y_{53}=-\frac{3 \eta}{R^{5}}+4 Y_{32} \quad \rightarrow \quad\left(3 Y_{32}-\xi^{2} Y_{53}\right)+\left(Y_{32}-q^{2} Y_{53}\right)=\frac{3 \eta}{R^{5}}$ and $Z_{32}-q^{2} Z_{53}=\left(\frac{1}{R^{3}}-\frac{3 q^{2}}{R^{5}}\right) \sin \delta-h\left[\frac{3 \eta}{R^{5}}-\left(3 Y_{32}-\xi^{2} Y_{53}\right)\right]=\left(\frac{1}{R^{3}}-\frac{3 q^{2}}{R^{5}}\right) \sin \delta-\frac{3 \eta(\eta \sin \delta-\tilde{c})}{R^{5}}+h\left(3 Y_{32}-\xi^{2} Y_{53}\right)$

$$
=\frac{3 \tilde{c} \eta}{R^{5}}-\frac{2 \sin \delta}{R^{3}}+\frac{3 \xi^{2} \sin \delta}{R^{5}}+h\left(3 Y_{32}-\xi^{2} Y_{53}\right)=\frac{3 \tilde{c} \eta}{R^{5}}+h Y_{32}-2\left(\frac{\sin \delta}{R^{3}}-h Y_{32}\right)+\xi^{2}\left(\frac{3 \sin \delta}{R^{5}}-Y_{53}\right)=\frac{3 \tilde{c} \eta}{R^{5}}+h Y_{32}-2 Z_{32}+\xi^{2} Z_{53}
$$

$$
\frac{\partial}{\partial y} q^{2} Z_{32}=2 q Z_{32} \sin \delta-q^{2}\left(\frac{3 \tilde{c}}{R^{5}} \cos \delta+Y_{32} \sin \delta \cos \delta+q Z_{53} \sin \delta\right)=q\left\{-\frac{3 \tilde{c} q}{R^{5}} \cos \delta-q Y_{32} \sin \delta \cos \delta+\left(2 Z_{32}-q^{2} Z_{53}\right) \sin \delta\right\}
$$

$$
=q\left\{-\frac{3 \tilde{c} q}{R^{5}} \cos \delta+\frac{3 \tilde{c} \eta}{R^{5}} \sin \delta+\left[(h-q \cos \delta) Y_{32}-Z_{32}+\xi^{2} Z_{53}\right] \sin \delta\right\}=q\left\{\frac{3 \tilde{c} \tilde{d}}{R^{5}}-\left[z Y_{32}+Z_{0}\right] \sin \delta\right\}
$$

(* 7) $\frac{\partial}{\partial y} \xi q Z_{32}=\xi\left\{Z_{32} \sin \delta-q\left(\frac{3 \tilde{c}}{R^{5}} \cos \delta+Y_{32} \sin \delta \cos \delta+q Z_{53} \sin \delta\right)\right\}=\xi\left\{-\frac{3 \tilde{c} q}{R^{5}} \cos \delta-q Y_{32} \sin \delta \cos \delta+\left(Z_{32}-q^{2} Z_{53}\right) \sin \delta\right\}$

$$
=\xi\left\{-\frac{3 \tilde{c} q}{R^{5}} \cos \delta+\frac{3 \tilde{c} \eta}{R^{5}} \sin \delta+\left[(h-q \cos \delta) Y_{32}-2 Z_{32}+\xi^{2} Z_{53}\right] \sin \delta\right\}=\xi\left\{\frac{3 \tilde{c} \tilde{d}}{R^{5}}-\left[z Y_{32}+Z_{32}+Z_{0}\right] \sin \delta\right\}
$$

(*8) $\frac{\partial}{\partial \xi} \frac{\xi}{R+\tilde{d}}=\frac{1}{R+\tilde{d}}-\frac{\xi^{2}}{R(R+\tilde{d})^{2}}=\frac{R(R+\tilde{d})-\xi^{2}}{R(R+\tilde{d})^{2}}=\frac{R \tilde{d}+\tilde{y}^{2}+\tilde{d}^{2}}{R(R+\tilde{d})^{2}}=\frac{(R+\tilde{d}) \tilde{d}+\tilde{y}^{2}}{R(R+\tilde{d})^{2}}=\left(\tilde{d}+\frac{\tilde{y}^{2}}{R+\tilde{d}}\right) D_{11}$
(*9)

$$
\left\{\begin{aligned}
\frac{\partial}{\partial \xi} \tan ^{-1} \frac{\xi \eta}{q R} & =\frac{q^{2} R^{2}}{\xi^{2} \eta^{2}+q^{2} R^{2}} \frac{\eta q R-\xi^{2} \eta q / R}{q^{2} R^{2}}=\frac{\eta q\left(R^{2}-\xi^{2}\right)}{R\left(\xi^{2}+q^{2}\right)\left(\eta^{2}+q^{2}\right)}=\frac{\eta q}{R\left(R^{2}-\eta^{2}\right)}=\frac{q}{R^{2}-\eta^{2}}-\frac{q}{R(R+\eta)}=-q Y_{11} \\
\frac{\partial}{\partial y} \tan ^{-1} \frac{\xi \eta}{q R} & =\frac{\xi q R \cos \delta-\xi \eta(R \sin \delta+q \tilde{y} / R)}{\xi^{2} \eta^{2}+q^{2} R^{2}}=\frac{\xi q\left(R^{2}-\eta^{2}\right) \cos \delta-\xi \eta\left(R^{2}+q^{2}\right) \sin \delta}{R\left(\xi^{2}+q^{2}\right)\left(\eta^{2}+q^{2}\right)}=\frac{\xi q \cos \delta}{R\left(R^{2}-\xi^{2}\right)}-\frac{\xi \eta \sin \delta}{R\left(R^{2}-\xi^{2}\right)}-\frac{\xi \eta \sin \delta}{R\left(R^{2}-\eta^{2}\right)} \\
& =\frac{q \cos \delta}{R^{2}-\xi^{2}}-\frac{q \cos \delta}{R(R+\xi)}-\frac{\eta \sin \delta}{R^{2}-\xi^{2}}+\frac{\eta \sin \delta}{R(R+\xi)}-\frac{\xi \sin \delta}{R^{2}-\eta^{2}}+\frac{\xi \sin \delta}{R(R+\eta)}=\tilde{d} X_{11}+\xi Y_{11} \sin \delta
\end{aligned}\right.
$$

(*10) It was shown in "Derivation of Table 6", $\iint I_{4}^{0} d \eta d \xi=\int \frac{\tilde{y}}{R(R+\tilde{d})} d \eta=\frac{1}{\cos \delta}[\ln (R+\tilde{d})-\sin \delta \ln (R+\eta)]$

$$
\left.\begin{array}{rl}
\text { and } \quad \iint I_{5}^{0} d \xi d \eta & =\int \frac{\xi}{R(R+\tilde{d})} d \eta=\frac{2}{\cos \delta} \tan ^{-1} \frac{\eta(X+q \cos \delta)+X(R+X) \sin \delta}{\xi(R+X) \cos \delta} \\
\text { As an alternative } & \iint I_{5}^{0} d \eta d \xi
\end{array}\right)=\int \frac{1}{\cos \delta}\left(\frac{q}{R(R+\eta)}-\frac{\tilde{y}}{R(R+\tilde{d})}\right) d \xi=\frac{1}{\cos \delta}\left(\tan ^{-1} \frac{\xi \tilde{d}}{\tilde{y} R}-\tan ^{-1} \frac{\xi}{\tilde{y}}-\tan ^{-1} \frac{\xi \eta}{q R}\right) .
$$

Because $\int I_{5}^{0} d \eta=\int\left(\frac{1}{R(R+\tilde{d})}-\xi^{2} \frac{2 R+\tilde{d}}{R^{3}(R+\tilde{d})^{2}}\right) d \eta=\int\left[\frac{\tilde{d}}{R^{3}}-\left(\frac{1}{R(R+\tilde{d})}-\tilde{y}^{2} \frac{2 R+\tilde{d}}{R^{3}(R+\tilde{d})^{2}}\right)\right] d \eta=\int\left[\frac{\tilde{d}}{R^{3}}-\frac{\partial}{\partial \tilde{y}} \frac{\tilde{y}}{R(R+\tilde{d})}\right] d \eta$

$$
=\int \frac{\eta \sin \delta-q \cos \delta}{R^{3}} d \eta-\frac{\partial}{\partial \tilde{y}} \int \frac{\tilde{y}}{R(R+\tilde{d})} d \eta=-\frac{\sin \delta}{R}+\frac{q \cos \delta}{R(R+\eta)}-\frac{1}{\cos \delta} \frac{\partial}{\partial \tilde{y}}[\ln (R+\tilde{d})-\sin \delta \ln (R+\eta)]
$$

$$
=-\frac{\sin \delta}{R}+\frac{q \cos \delta}{R(R+\eta)}-\frac{1}{\cos \delta}\left[\frac{\tilde{y}}{R(R+\tilde{d})}-\sin \delta\left(\frac{\cos \delta}{R}+\frac{q \sin \delta}{R(R+\eta)}\right)\right]=\frac{1}{\cos \delta}\left(\frac{q}{R(R+\eta)}-\frac{\tilde{y}}{R(R+\tilde{d})}\right)
$$

$$
\left\{\begin{array}{l}
\int \frac{q}{R(R+\eta)} d \xi=q \int\left(\frac{1}{R^{2}-\eta^{2}}-\frac{\eta}{R\left(R^{2}-\eta^{2}\right)}\right) d \xi=\tan ^{-1} \frac{\xi}{q}-\tan ^{-1} \frac{\xi \eta}{q R} \\
\int \frac{\tilde{y}}{R(R+\tilde{d})} d \xi=\tilde{y} \int\left(\frac{1}{R^{2}-\tilde{d}^{2}}-\frac{\tilde{d}}{R\left(R^{2}-\tilde{d}^{2}\right)}\right) d \xi=\tan ^{-1} \frac{\xi}{\tilde{y}}-\tan ^{-1} \frac{\xi \tilde{d}}{\tilde{y} R}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
& \left(\frac{\partial}{\partial \xi} \tan ^{-1} \frac{\eta(X+q \cos \delta)+X(R+X) \sin \delta}{\xi(R+X) \cos \delta}=\frac{1}{2} \frac{\partial}{\partial \xi}\left(\tan ^{-1} \frac{\xi \tilde{d}}{\tilde{y} R}-\tan ^{-1} \frac{\xi}{\tilde{y}}-\tan ^{-1} \frac{\xi \eta}{q R}\right)=\frac{1}{2}\left[\frac{\tilde{y} \tilde{d}\left(R^{2}-\xi^{2}\right)}{R\left(\tilde{y}^{2}+\xi^{2}\right)\left(\tilde{y}^{2}+\tilde{d}^{2}\right)}-\frac{\tilde{y}}{R^{2}-\tilde{d}^{2}}+q Y_{11}\right]\right. \\
& =\frac{1}{2}\left[\left(\frac{\tilde{y}}{R^{2}-\tilde{d}^{2}}-\frac{\tilde{y}}{R(R+\tilde{d})}\right)-\frac{\tilde{y}}{R^{2}-\tilde{d}^{2}}+q Y_{11}\right]=\frac{1}{2}\left(q Y_{11}-\tilde{y} D_{11}\right) \\
& \frac{\partial}{\partial y} \tan ^{-1} \frac{\eta(X+q \cos \delta)+X(R+X) \sin \delta}{\xi(R+X) \cos \delta}=\frac{1}{2} \frac{\partial}{\partial y}\left(\tan ^{-1} \frac{\xi \tilde{d}}{\tilde{y} R}-\tan ^{-1} \frac{\xi}{\tilde{y}}-\tan ^{-1} \frac{\xi \eta}{q R}\right)=\frac{1}{2}\left[\frac{-\xi \tilde{d}\left(R^{2}+\tilde{y}^{2}\right)}{R\left(\tilde{y}^{2}+\xi^{2}\right)\left(\tilde{y}^{2}+\tilde{d}^{2}\right)}+\frac{\xi}{\tilde{y}^{2}+\xi^{2}}-\left(\tilde{d} X_{11}+\xi Y_{11} \sin \delta\right)\right] \\
& =\frac{1}{2}\left[\frac{-\xi \tilde{d}}{R\left(R^{2}-\tilde{d}^{2}\right)}+\frac{-\xi \tilde{d}}{R\left(R^{2}-\xi^{2}\right)}+\frac{\xi}{R^{2}-\tilde{d}^{2}}-\left(\tilde{d} X_{11}+\xi Y_{11} \sin \delta\right)\right] \\
& =\frac{1}{2}\left[\left(\frac{\xi}{R(R+\tilde{d})}-\frac{\xi}{R^{2}-\tilde{d}^{2}}\right)+\left(\frac{\tilde{d}}{R(R+\xi)}-\frac{\tilde{d}}{R^{2}-\xi^{2}}\right)+\frac{\xi}{R^{2}-\tilde{d}^{2}}-\left(\tilde{d} X_{11}+\xi Y_{11} \sin \delta\right)\right]=\frac{1}{2}\left(\xi D_{11}-\xi Y_{11} \sin \delta\right) \\
& \frac{\partial}{\partial z} \tan ^{-1} \frac{\eta(X+q \cos \delta)+X(R+X) \sin \delta}{\xi(R+X) \cos \delta}=\frac{1}{2} \frac{\partial}{\partial z}\left(\tan ^{-1} \frac{\xi \tilde{d}}{\tilde{y} R}-\tan ^{-1} \frac{\xi}{\tilde{y}}-\tan ^{-1} \frac{\xi \eta}{q R}\right)=\frac{1}{2}\left[\frac{-\xi \tilde{y}\left(R^{2}-\tilde{d}^{2}\right)}{R\left(\tilde{y}^{2}+\xi^{2}\right)\left(\tilde{y}^{2}+\tilde{d}^{2}\right)}-\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)\right] \\
& =\frac{1}{2}\left[\frac{-\xi \tilde{y}}{R\left(R^{2}-\xi^{2}\right)}-\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)\right]=\frac{1}{2}\left[\frac{\tilde{y}}{R(R+\xi)}-\frac{\tilde{y}}{R^{2}-\xi^{2}}-\left(\tilde{y} X_{11}+\xi Y_{11} \cos \delta\right)\right]=-\frac{1}{2} \xi Y_{11} \cos \delta
\end{aligned}
$$

