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SURFACE DEFORMATION DUE TO SHEAR AND TENSILE FAULTS 
IN A HALF-SPACE 

BY YOSHIMITSU OKADA* 

ABSTRACT 

A complete suite of closed analytical expressions is presented for the surface 
displacements, strains, and tilts due to inclined shear and tensile faults in a half- 
space for both point and finite rectangular sources. These expressions are 
particularly compact and free from field singular points which are inherent in the 
previously stated expressions of certain cases. The expressions derived here 
represent powerful tools not only for the analysis of static field changes associ- 
ated with earthquake occurrence but also for the modeling of deformation fields 
arising from fluid-driven crack sources. 

INTRODUCTION 

Since dislocation theory was first introduced to the field of seismology by Steketee 
(1958), as well as a pioneer work by Rongved and Frasier (1958), numerous 
theoretical formulations describing the deformation of an isotropic homogeneous 
semi-infinite medium have been developed with increasing completeness and gen- 
erality of source type and geometry. They range from the derivation of the surface 
displacement due to a point source of vertical strike-slip type in a Poisson solid 
(Steketee, 1958) to the strain fields at depth due to an inclined finite shear fault in 
a medium with arbitrary elastic constants (Iwasaki and Sato, 1979). The accom- 
plishments of the various papers through which this progress has been achieved are 
summarized in Table 1. 

Efforts to develop the formulations in a more realistic earth model have also been 
advanced through numerous studies, which include the effect of earth curvature 
(McGinley, 1969; Ben-Menahem et al., 1969, 1970; Smylie and Mansinha, 1971), 
the effect of surface topography (Ishii and Takagi, 1967a; Takemoto, 1981; Segall 
and McTigue, 1984), the effect of crustal layering (Ishii and Takagi, 1967b; Mc- 
Ginley, 1969; Ben-Menahem and Gillon, 1970; Singh, 1970; Sato, 1971; Rybicki, 
1971; Chinnery and Jovanovich, 1972; Sato and Matsu'ura, 1973; Jovanovich et al., 
1974a, b; Matsu'ura and Sato, 1975), the effect of lateral inhomogeneity (Rybicki, 
1971, 1978; Rybicki and Kasahara, 1977; McHugh and Johnston, 1977; Niewiadom- 
ski and Rybicki, 1984), and the effect of obliquely layered medium (Sato, 1974; Sato 
and Yamashita, 1975). These studies revealed that the effect of earth curvature is 
negligible for the shallow events at distances of less than 20 °, but that the vertical 
layering or lateral inhomogeneity can sometimes cause considerable effects on the 
deformation fields. 

In spite of such an advance in calculating theoretical fields, the analyses of actual 
observations are still mostly based upon the simplest assumption of an isotropic 
homogeneous half-space and the simplest source configuration, largely for the 
following three reasons. First, it is most convenient and useful as the first approx- 
imation model. Second, the source model itself is inherently nonunique. Third, the 
quality of crustal movement data is generally poor at least up to the present 
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(Mikumo, 1973; Okada, 1980; Wyatt, 1982; Wyatt  et al., 1984). The last two factors 
often make it meaningless to compare the data with the predictions of an elaborate 
source or earth model. 

The first objective of this paper is to check and review the closed analytical 
expressions which are already published to describe the surface deformation due to 
shear fault in a half-space. As our observations are restricted to near-ground surface, 
this class of solutions has the greatest practical importance to the study of the 
earthquake sources. Some of them, as presented, are too lengthy and complicated, 
while others have some singularities under the special conditions. For example, 
Savage and Hastie's (1966) formula is too complicated and cannot be applied to the 
vertical or horizontal fault, while Sato and Matsu'ura's (1974) formula results in 
"zero divide" at the points where the extensions of fault edges intersect the ground 
surface. Besides, misprints occur all too often in the published expressions. In this 
paper, the compact formulas to calculate the surface displacements, strains, and 
tilts due to a general shear fault in a half-space are given, which have been carefully 
checked to be free from any singularities. 

The second objective of this paper is to add a heretofore unknown solution for 
the displacements, strains, and tilts arising from opening-mode dislocations. In 
contrast to the progress that has been made in the modeling of the deformation 
fields due to shear dislocations, the studies related to tensile fault are scarce as is 
seen in Table 1. The main reason for this is, no doubt, the importance that has 
been described to model the static field changes associated with earthquake occur- 
rence. Tensile fault representation, which has a Burger's vector normal to the 
dislocation surface, also has some very important geophysical applications, such as 
a modeling of the deformation fields due to dyke injection in the volcanic region, 
mine collapse, or fluid-driven cracks. 

Berry and Sales (1962) derived the surface displacement fields due to a closure of 
horizontal crack in a transversely isotropic medium. Maruyama (1964) gave the 
expressions of surface displacements due to vertical and horizontal tensile faults in 
a semi-infinite Poisson solid. Yamazaki (1978) treated the deformation fields arising 
from a dilatancy source. Davis (1983) derived an expression of the vertical displace- 
ment due to an inclined tensile fault in a half-space. He showed that this model can 
approximate well a tensile crack, just as shear dislocations are successfully used to 
approximate the deformation fields by shear cracks. 

Recently, Evans and Wyatt  (1984) found an interesting relation between changes 
in the water-head within a borehole and associated ground surface deformation in 
the surrounding region. Based upon the mechanism that subsurface hydraulically 
conductive fractures respond to changing fluid pressure, they suggested a quanti- 
tative tensile crack model to explain the observation. Their work has important 
implications for the measurement of crustal deformation in that it provides a 
physical basis for understanding an important class of crustal movement noise. It 
is well known that the precipitation is a major noise factor for crustal movement 
observation not only in the short period but also in the long one (Kasahara et al., 
1983), and it is definite that the precipitation affects the ground movement through 
some changes in the state of groundwater (Shichi and Okada, 1979; Edge et al., 
1981a, b; Takemoto, 1983). But so far, the effects of precipitation were mostly 
discussed with appropriate formal mathematical models (Takemoto, 1967; Tanaka, 
1967; Sato et al., 1980; Yanagisawa, 1980) or nonlinear tank model simulators 
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(Tanaka, 1979; Yamauchi, 1981). In the latter case, the water height in a certain 
tank is assumed to be proportional to the induced ground strain or tilt changes, 
being somewhat suggestive of Evans and Wyatt 's (1984) model. The new solution 
presented here, for the surface deformation induced by an arbitrarily oriented 
rectangular opening-mode dislocation, provides a versatile and quantitative frame- 
work for evaluating and perhaps removing fluid-filled crack-induced noise from 
crustal deformation records. 

POINT SOURCE 

Steketee (1958) showed that the displacement field ui(x~, x2, x3) due to a disloca- 
tion Aui(~l, ~2, ~3) across a surface X in an isotropic medium is given by 

(i) 

Z 
Y 

f 

where, 6jk is the Kronecker delta, k and tt are LamB's constants, vk is the direction 
cosine of the normal to the surface element dE, and the summation convention 

i 
t 

I 

t 
t 

FIG. 1. Geometry of the source model. 

× 

applies, u / i s  the ith component of the displacement at (x~, x2, x3) due to the j t h  
direction point force of magnitude F at (~1, ~2, ~3), whose expressions in a homoge- 
neous half-space are listed in Press (1965). 

Here, we ts~-e the Cartesian coordinate system as is shown in Figure 1. Elastic 
medium occupies the region of z =< 0 and x axis is taken to be parallel to the strike 
direction of the fault. Further, we define elementary dislocations U1, [/2, and U, so 
as to correspond to strike-slip, dip-slip, and tensile components of arbitrary dislo- 
cation. In Figure 1, each vector represents the movement of hanging-wall side block 
relative to foot-wall side block. But note that, e.g., although U2 in Figure 1 shows 
reverse fault-type motion, this changes to normal fault-type movement if dip angle 

becomes sin25 < 0. In this coordinate system, u /  at the ground surface are 
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expressed as follows 

F {~ (Xl--~1) 2 I t  [ 1 (Xl--. ~,l)2T[ 
u'~ = 4~rg + R ~ + ~ R - ~3 R(R - ~3)2JJ 

U21 = ~ (Xl - -  ~l)(X2 - -  ~2) 
k +/~ R(R }3) 2 

u3 ~ = ~ ( x l - } ~ )  - R  ~ X + ~ R ( R -  }3 (2) 

ul 2 = ~ (xl - ~l)(x2 - ~2) - ~ -  a + tt R ( R -  }a) ~ 

F{R (x~ - }:)2 ~22 -_ ~;~ + R ~ 
+ ~ R - }3 R(R  - }3)2J} 

us 2 = ~ (x2 - ~2) - R 3 h + g R(R - }3 (3) 

F (x~-~){ ~3 
u13 = 4~r# - -~  

u2 3 (x~ - ~ )  - - ~  

u~3 4~'---~ + - ~  + ~ + 

1} 
+ ;~ + # R ( R  ~3) 

+ X + g R ( R -  }~) 

(4) 

where R 2 = (xl - }~)2 + (x2 - ~2) 2 + }3 2. 
Using equation (1), the contr ibution from surface element AZ of each elementary 

dislocation is wri t ten as follows 

Strike-slip 

1 r/eu, 1 eu2~. pu,  1 eu}~ ] 

Dip-slip 

1u,  Az[[eu} ou?, {ou} o~A 1 
}2 / \ o}3 
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Tensile 

F U3 ~ Our 
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+ tL\-~2 sin26 + -~3 c°s2 ~ - tL\ 0~3 + -~-2)sin26]" (7) 

These show the body force equivalents of a double-couple with moment ~U1AZ 
or t~U2AZ in case of shear fault, and a center of dilatation (intensity hU3A~) 
combined with a double-couple without moment (intensity 2t~U3AZ) in case of 
tensile fault. Substituting (2), (3), and (4) into (5), (6), and (7), and setting ~1 = ~2 
= 0 ,  ~3 = -d ,  we can get the surface displacements due to a point source located at 
(0, 0, -d ) ,  from which the surface strains and tilts can be easily obtained by 
differentiation. The final results are listed below using (x, y, z) instead of (xl, x~, 
x3) and the superscript o to distinguish the quantities related to point sources. 

(1) Displacements 

For strike-slip 

For dip-slip 

For tensile fault 

Ul[3x2q Ux ° = --~-~[ 

U~[3xyq 

U~[3xdq 
~z° = -~L-~- 

+ Ii°sin 6]AE 

+ I2°sin 5]AE 

+ I4°sin 5]AZ. 

] ux ° = -~-~[--~- - /3°s in  6 cos 6 A~ 

] u g =  2~'[ R 5 - I i ° s i n S c o s 6  AZ 

u [3dpq ] 
u~ ° = - ~ $ [ - - ~  h°sin 5 cos 6 A~. 

U313xq2 ] Ux°= ~L-~-~-- i3Osin2 ~ ~ 

v313yq2 ] u9 = 27r[ R 5 - II°sin~ 6 a s  

u o U3[3dq 2 ] 
z = ~-~L--~-- - I5 °sin2 5 AE 

(8) 

(9) 

(Io) 
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where 

(2) Strains 
For strike-slip 

x 7 x R~7-~/J  

# x 1 [ [ R - ~ ¥ ~  ~ 3R + d 1 I2 0 

# x o 

- - xy Ra(R + d)2j 

t,oo 
p = y c o s S + d s i n 5  

q = y sin 5 - d cos 6 

R e = x  2 + y 2 + d  e = x  2 + p 2 + q 2 .  

(n) 

(12) 

ou. u~xq( ~x~ ] 
Ox = - ~ [ - - ~  2 -  R2 ] + y~°sin ~ AZ 

UI[ 15xeyq [3x 2 
OUx° --~r - -R 7 + \ R 5 + J2°)sin 5]AE 

ou. u ~ - (  ~-~ ] 
~x = 2~rL R 5 1 -  R2 ] + J2°sin 5 AZ 

0u. ~ r~x~( <~ t~x~ ) ] 
8y -2--~LR 5 1 - - ~ - ~ ] + \ R S  + J 4  ° s in5 AE. (13) 

For dip-slip 

/ 0 u ~  ° 

Oy 
Ouy 
Ox 

oy 

o~ ° u. [3pq ( 5 x e ~  ] 
O--~- - -2---~ [ R 5 1 -  R2 ] - J3°sin S cos 5 AZ 

=-~L~ s -  Re ] 

u~[ 15xypq ] 
= ~ R7 Jl°sin ~ cos ~ AE 

= 2 4  R ~ i - ~ - ~ ]  + ~ - ~  - ; ? s i n  ~ ~os ~ ~ Z .  (14) 
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For tensile fault 

Ou~° U3[3qe (1 5xe~ 5]A~ 
Ox - 2-~[-R -¢ - R e ] - J3°sine 

Ou~ ° U3[3xq ( 5yq~_ jlOsin2 5]A~ 
Oy =27rLR 5 2 s i n S -  Re ] 

ou? us[ 15~yq e ] 
0x = ~ R7 Jl°sin e 5 A~ 

0y = 2-~[R--~ q + 2y sin 5 - Re ] (15) 

where s = p sin 5 + q cos 5 and 

3R + d 5R 2 + 4Rd + d 2] 
-3xy  + 3x3y Jl° - ~ + # R~(R + d) ~ -R~t~-+ -d-) 4 J 

tt [~ 3 5R 2 + 4 R d + d 2 ]  
J ~ ° -  h + # 3 R(R + d)2 + 3x2y 2 ~ t ~ - d - ) 4  j 

.[1 3xe] 
J3 ° }, + ~ ~a Rsj  - J e °  

_ . [  3xy] 
,I4 ° - ~ + ~ Rs J - J1 °. (~6) 

(3) Tilts 

For strike-slip 

f m 
o zO ] 
Ox = 2~r[R 5 1 -  R2 ] + Kl°sin 5 AZ 

OUz ° _ UI[ 15xydq 
Oy 2-~-L R7 

  O)sin (17) 

For dip-slip 

u2  15xdpq  
Ouz° - ~ [  Rv - K~°sinScos ~]AZ 

-~;-y = 2~[R o s - - -W/  (is) 
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For tensile fault 

Ua 15xdq e OUzO=2"~[ OX R 7 K3°sin2 8] A~ 

0y 2~-[ R 5 2sin ~ - -RT-] (19) 

where 

2 R + d  
# y R3 +d) Kl° = X + 

tt x[ 2R + d 
g 2 ° =  X + tt R £ ~  + d ) 2 

Ks° X + u[ RsJ - K2°" 

xe 8R 2 + 9Rd + 3d21 
kT( ¥ j 

8R 2 + 9Rd + 3 d 2] y2 

J RS(R + d)3 

(20) 

FINITE RECTANGULAR SOURCE 

For a finite rectangular fault with length L and width W (Figure 1), the defor- 
mation field can be derived by taking x - ~', y - ,/'cos 5 and d - ,/'sin 5 in place of 
x, y, and d in the equations obtained in the previous section and by performing the 
integration 

fo fo W d}' d,/. (21) 

Following Sato and Matsu'ura (1974), it is convenient to change variables from ~', 
~' to ~, ~ by 

/ x - ~ '  = ~  

. p - - ~ '  = ~  
(22) 

where, p = y cos 6 + d sin 6 as before. Then, the above integration becomes 

f x-L fppp- W 
d~ dn. (23) 

x 

The final results condensed into compact forms are listed below using Chinnery's 
notation ][ to represent the substitution 

f($, n) II = f(x, p) - f(x, p - w )  - f (x  - L, p) + f (x  - L, p - W).  (24) 

If we take a rectangular fault with length 2L (dashed line in Figure 1), it is only 
necessary to replace x in the first and the second terms of the right-hand side of 
equation (24) to x + L. 
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(1) Displacements 

For strike-slip 

u~ = 2~r[R(R + 7) 
+ tan -1 ~-~ + I~sin 5] 

[71[ 2)q + q cos 5 
u, = -2-~LR(R + 7) R +-----~ + I2sin 5] 

/_71[ dq + q sin 5 
Uz = --2-~LR(R + 7) R +------n + I4sin 5] . (25) 

For dip-slip 

U~[q 1 
- I3sin 5 cos 5] Ux = -~L-R 

U2[ 5'q 
+ COS 5 tan -1 ~7 ] uy = - ~ L R ( f i +  e) ~ - I~sin 5 cos 5 

u~ -~-~[R(ff~_ ~) + sin 5 tan -~ --qR - I~sin 5 cos 5 . 

For tensile fault 

(26) 

U3[ q2 /~sin25] 

u~[ -aq 
u~ = ~ L R ( ~ +  }) sin [R(R  + 7) tan-~ q~-~} - Ilsin25] 

where 
~ = ~L)~(~- ~) +cos J R ( R + 7 )  

tan-1 q~} - /ssin25] (27) 

1 - -  m 

/2= 

 [ci  in, 
+ g 5 R + a cos 5 

[-ln(R + 7)] - Ia X + #  

m h 

# [ 1 ) _in(R+7)]+sin___~ 
X + ~ cos 5 R + d cos 5 L 

1 # 
5[ln(R + 3) - sin 5 ln(R + 7)] 

X + # cos 

2 tan_ 1 7(X + q cos 5) + X(R  + X)sin 5 
~(R + X)cos 5 X + # cos 5 

(28) 
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and if cos 5 = 0, 

~q 
11= 2 ( X + g )  ( R + 3 )  2 

~ [  n )q 
1 3 - 2 ( X + g )  ~ + ( R + 3 )  2 

# q 
/4= X + ~ R + 3  

# ~ sin 6 
h =  ~ + tt R + [1 

- ln(R + 7)] 

(29) 

p = y c o s 6 + d s i n 6  

q = y sin 6 - d cos 

:~ = ,1 cos 6 + q sin 

3 = ~/sin ~ - q cos 6 

R 2 = ~2 + ,/2 + q2 = ~2 -4-~2 .{_ ~2 

X 2 = ~2 .~_ q2. (30) 

When cos 6 = 0, we must  be careful that  there are two cases of sin 6 = +1 and -1 .  

(2) Strains 

For strike-slip 

~Ux 0 

Oux ° UI[ ~a 3 6] 
~ - ~ [ ~ ~ - ~ -  (~ A, + Je)sin 

O uy20 y 27fiR 
U1 ~ cos 6 + 

~[qz%smo[3A'° R-(--R-+-~2q s in6  ~2 + ~/2__7_ c o s 6 -  J4}sin 6] (31) 
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For dip-slip 

ou: ] 
-~x - 27fiR 3 + Jasin ~ cos 5 

OUx ° Ue[~q sin5 311 
031 - 27fir 3 R -  + Jlsin 5 cos 5 

Ou ° U2Dq q cos 5 ] 
Ox = ~-~[~5 + R(/~+ ~) + J~sin 6 cos 5 

sin 5 + J2sin 5 cos 6] . (32) 

For tensile fault 

~X = -- ~q2A' + Jasin2 5 

_ _ ] -~y 2~r[ R a (2qA,sin 5 + Jlsin 2 

OUy U3[q 2 ] 
-~-~L~- ~ cos ~ + qaA,sin ~ + Jlsin 2 5 

Ouy 2~[ q sin25 ~yy - (2? cos ~ - cl sin ~)q2At R(R + ~) ((q2A, - J2)sin 2 6] (33) 

where 

j ~  _ m tt 1 [R (2 1 ] sin~ 
X+~cos (R+d) 2 R + 3  cos 

ts 16[  R (:9 ] s in5 
X + # cos (R + d)2 cos 5 

m K ~  

J3 - X + g - R(R + 7) 

)t + R R(R + 

K 3  

J4 - J1. (34) 
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Ks and K3 are given in equation (40), and if cos 6 = 0, 

q [. 2~ 1] 2(}` + u) (R + d)2[R(R + 3) ] 

~, ~ sin ~ [ 2q ~ ] 
2(}, + #) (R +-d-)2[R(/~+ d) 1 J 

f 2R+ A~-R3(R + 02 

2 R + n  
A, -- R3(R + ,1) 2 . 

(35) 

(36) 

(3) Tilts 

For strike-slip 

+ 

Ouz Ul[clq (~eqA,co s sin5 :~q_ Kz)sin 6] ~ [ ~  cos ~ + (37) 

For dip-slip 

C)Uz Uz[[lq qsin5 
0x -- 2 ~ [ R  3 + R(R + 7) 

+ K3sin 6 cos 6] 

Ouz U2[~aqA _ ( R  2a }sinb_} 
Oy -2~r[' (R + ~) + R(R + ) sin  + sio cos ]l t (38) 

For tensile fault 

OUz U3[q 2 

Ox = - ~L~ 

o y  = -  (2, 

-I 
sin 6 - q3A,cos ~ + K3sin 2 6J 

sin 6 + d cos 6)q2A~ + ~q2A,sin 6 cos 6 

(39) 
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g ~  _ m # ~ [ 1 s'_~_m_~ .] 
X + ~ c o s S [ R ( R + 3 )  R(R + 7)J 

~ [  s in6  q c o s 6  ] 
K 2 -  ~ + ~ R -  + R(R +-~) - K3 

K z -  k + # c o s 6 - R ( R + 7 )  R(R d 

and if cos 6 = 0, 

~ ~q 
K1 = x + ~ R ( n - ~  3 ) ~  

K3 -~-+ ~ R + d[R(R + 3) 1 . (41) 

In the indefinite integral expressions stated in this section, some terms become 
singular at the special conditions. Returning to the integral (23) and carefully 
checking these special cases, we can reach the following rules to avoid all the 
singularities. (i) When q = 0, set tan-l(~7/qR) = 0 in equations (25) to (27). (ii) 
When ~ = 0, set I~ = 0 in equation (28). (iii) When R + 7 = 0 (this occurs only 
when sin ~ < 0 and ~ = q = 0), set all the terms which contain R + 7/ in their 
denominators to be zero in equations (25) to (40), and replace ln(R + 7) to 
- ln (R  - 7) in equations (28) and (29). 

DISCUSSION 

A compact analytical expression of the surface displacements, strains, and tilts 
due to inclined shear and tensile faults in a half-space are given for both point and 
finite rectangular sources in the preceding sections. All similar expressions known 
to the author were checked to be equivalent to the formulas given here except for 
some misprints in the literatures, which are now listed in the Appendix. 

The formulas for point sources derived here can be used as an alternative of 
Maruyama's (1964) expressions to estimate far-field deformation or to construct 
the deformation fields by more general faults. The formulas for finite shear fault 
derived here are essentially identical to those of Matsu'ura (1977) as to the 
displacements and Sato and Matsu'ura (1974) as to the strains and tilts. But here, 
some revisions have been made to overcome the following difficulties which are 
included in the previous expressions. (i) On the line where the extension of the 
fault plane intersects the ground surface, the displacement becomes singular. (ii) 
On the lines where the vertical planes containing the inclined edges of the fault 
intersect the ground surface, the vertical displacement becomes singular. (iii) 
Displacements cannot be evaluated in case of 5 = - 7r/2. (iv) At the points where 
the inclined edges of the fault intersect the ground surface, the strains and tilts 
become singular. In addition to this revision, the formulas for tensile fault are newly 
added in this paper, and the work to derive the expressions of the surface defor- 
mation fields due to buried rectangular faults in a half-space seems to have come 
to maturity now. 
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As to the surface deformation due to more general polygon-shaped faults, we can 
use the results by Comminou and Dundurs (1975). They gave the expressions of 
displacement and strain at the free surface of a half-space for an angular dislocation. 
Any polygon-shaped faults (shear or tensile) can be constructed by a superposition 
of a finite number of angular dislocations. 

All the formulas obtained here are composed of the terms of two kinds; ones 
independent of the medium constants, ~ and tL and the others dependent on them. 
The latters which are denoted b y / ,  J,  or K appear in the same fashion in the 
formulas of dip-slip case and tensile-fault case. This can be realized by an analogy 
with the P - SV coupling in the seismic wave theory, whereas the SH wave 
corresponds to the strike-slip case. It is clear that the deformation fields produced 
by a vertical fault of dip-slip type and the ones produced by a horizontal fault of 
any type do not depend on the medium constants, }, and g. 

The z direction strain components were not given in the preceding sections, but 
they can be easily found as follows using the boundary conditions at the free surface. 

OUx OUz 
Oz Ox 

Ouy ouz 
Oz Oy 

Ou~ ~ (Oux  Ou,) 
Oz--  X + 2 ~ \ ~ x  + ~ y  " (42) 

To assist the development of a computer program based upon these expressions, 
several numerical results to check it are listed in Table 2. Here, case 1 is for the 
point source, and the others are for the finite rectangular sources. A medium is 
assumed to be ~ = tL in the all cases, and the results are presented in the unit of 
UA Z in case 1 and in the unit of U in the others, where U stands for U1, [/2, or [/3. 
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APPENDIX 

Misprints in the already published expressions of the surface deformation fields, 
which were found in the course of this study, are listed below. 

In Maruyama (1964) 

p. 320 For (1/R ~ + 1IS 3) in w~3, read (1/R 3 + 1/$3)xl .  
For (1/R 3 + 1/S  ~) in w~3, read (1/R 3 + 1/S~)x2. 
For (x3 - ~3)2/S 5 in w~3, read (x~ + ~3)2/S 5. 

p. 321 For 2p5/S 7 in w~n, read 2p5/S 5. 
p. 330 For x2/r 2 in W~i, read x f f r  4. 
p. 345 For p = x/X12 + X22 + X23, read p = x/X12 + X22 + X32. 

In Okada (1975) 

p. 403 For (1 - d ) / a  in/5,  read (1 - a)/a .  
p. 404 For (1 - 5x2/R 2) in ey, read (1 - 5y2/R2). 

For 3x2/R 5 in 7xy, read 3x2/2R 5. 
For x2(5x 2 - y2) in J2, read y2(5x2 - y2). 

In Yamazaki (1978) 

p. 121. For (1 - 2~)(1 - 4v)(z + ~0) in equation (1-15c), read 2(1 - 2v)(1 - 4v) 
(z + ~o). 

In Chinnery (1963) 

p. 923 For s1(1 - b) in u~/u, read s2(1 + b). 

In Savage and Hastie (1966) 

p. 4903 For -6x2/p  4 - -2/(1 + ~') + x2p-2/(1 + ~-)2 in Wla~, read -6~x2/p  4 - p-2/  
(1 + ~') + x2p-4/(1 + ~)2. 
For (v 2 + a 2) in $2, read (v 2 + a2)p. 
For 2b in $4, read 2bv. 

In Mansinha and Smylie (1971) 

p. 1437 F o r { 2 ( q 3 + ~ ) / Q ( Q + x ~ - ~ )  + ( x x - ~ x ) / Q ( Q + q 3 + ~ ) - q 2  " "  in 
127rU3/U. read {2(q~ + ~)/Q(Q + x~ - ~ )  + (xl - ~I)/Q((~ + q3 + ~)} - 
q 2 " ' "  

In Sato and Matsu 'ura  (1974) 

p. 216 For {q sin 5/(R + 7')  - cos 5} in equation (14), read {q sin 5/(R + 71') + 
cos 5}. 

In Yamazaki (1975) 

p. 216 For [2/R - 1/Rv] in u~,2 of dip-slip, read [2/R + 1/R~ - lIRa]. 
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In Matsu'ura (1977) 

p. 81 For nq(3R 2 - 72) in equation (2.8.5), read ~q(3R 2 - 72). 

In Matsu'ura and Tanimoto (1980) 

p. 106 For {ln(R + el) - sin 5 ln(R + 7)} in gy and gz, read {ln(R + d) + sin 
ln(R + 7)}. 

p. 107 For ~y2 + R(~c7 - q:~) in gx,x, read ~[vy2 + R(~cl - q:~)]. 

In Davis (1983) 

p. 5828 For 2(1 - v){- B/X1 tan- t (UV/Ap)  - A3(U + B)2V/X13(U 2 + A2)p} in 
equation (8), read 2(1 - v){- B/X l tan - I (UV/Ap)]  - A3(U + B)2V/  
Xa3( U 2 + A Z) p. 
For b/2 in equation (10), read b/2~r. 


