Summary of Pre-session for 2021 IRDR Conference hosted by Japan National Committee

20 May 2021, 11:00-13:00 UTC (20:00-22:00 JST), Online (Zoom)

Title/Topic: Promoting Coherence among Disaster Risk Reduction, Climate Change Adaptation, and Sustainable Development by Establishing an "Online Synthesis System (OSS)" and Fostering "Facilitators" using OSS

Organiser: IRDR Japan National Committee (Subcommittee for IRDR, Science Council of Japan (SCJ))

Dr. Haruo HAYASHI, Chair of Japan NC, chaired the Pre-session.

Ms. Mami MIZUTORI, SRSG for DRR (Head of UNDRR), gave an opening keynote speech, followed by presentations by Japan NC on OSS and Facilitators.

- 1) Concepts and Application of OSS by Toshio KOIKE (Vice-Chair, International Cooperation Committee, SCJ)
- 2) Fostering Facilitators by Keiko TAMURA (Professor, Niigata University)
- 3) OSS & Facilitators: Case Study in Myanmar by Akiyuki KAWASAKI (Professor, the University of Tokyo)

Panel discussion was animated by

Anthony SALES (DOST, Philippines),

Wei-Sen LI (NCDR, Taiwan),

Rajib SHAW (Chair, APSTAG and IRDR Young Scientists Program),

Riyanti DJALANTE (Chair, IRDR Scientific Committee) and

Qunli HAN (Executive Director, IRDR IPO),

with full of implications, which was moderated by

Kaoru TAKARA (Vice Chair, Japan National Committee and Professor, Kyoto University).

Conclusions:

Based on the presentations and discussions in the Pre-session, we concluded the following proposals for the new DRR Research Agenda.

- Coherence among DRR, CCA, and SDGs is important for disaster resilience
- ⇒ "Consilience" of knowledge in DRR, CCA, and SDGs to be conducted in a comprehensive manner "on-site"
- ⇒ Information/knowledge base of interdisciplinary and transdisciplinary science, technology, engineering and innovation to be provided
- ⇒ Online Synthesis System (OSS) must be useful for integrated disaster management and resilience
- Local or "on-site" implementation with the locals/stakeholders is prerequisite for problem solving and decision making
- ⇒ Necessity of "on-site" Facilitators as catalysis to bridge consilience and stakeholders through OSS: Fostering local and academic Facilitators and young generation is

- important.
- ⇒ Languages for OSS to be native tongue used by the locals, which could be supported by ICT innovation
- Roles of science communities are getting more and more important to cope with the new complex, cascading, systemic and emerging risk landscape at global level
- ⇒ IRDR Second Phase should be carried out
- ⇒ IRDR Japan ICoE to be established to promote disaster resilience and coherence among DRR, CCA, and sustainable development at global and regional levels with international stakeholders

Coherence among DDR, CCA, & SDGs wide discipline systemic in nature, global in scale

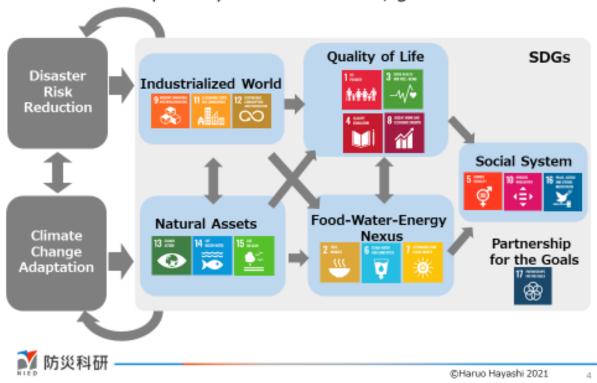


Figure1: Conceptual Diagram of Coherence among Disaster Risk Reduction, Climate Change Adaptation, and Sustainable Development

To promote coherence among DDR, CCA, and SDGs, any stakeholders have to have a wide range of expertise to cover these wide disciplines which are systemic in nature and global in scale.

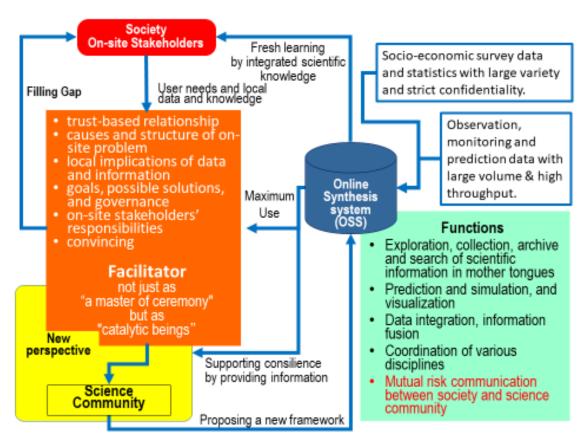


Figure 2: Image of OSS and Facilitators to Support On-site Problem Solving and Decision Making

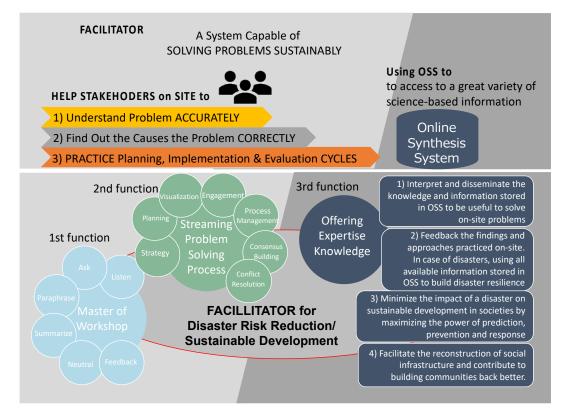


Figure3: Qualifications for and Functions of Facilitators

The Facilitator has to be catalysts on-site with capabilities of 1) facilitating meetings, 2) streamlining problem-solving processes, and 3) offering expertise through OSS.

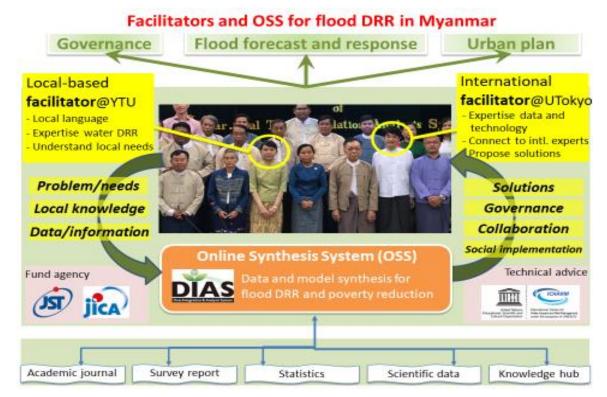
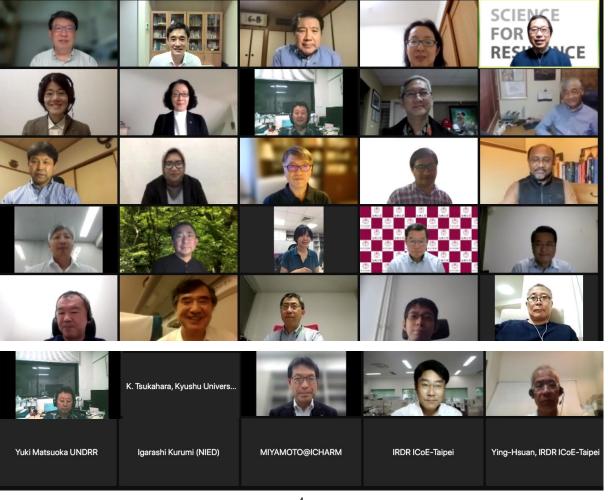



Figure 4: Good practical experiences in Myanmar

A local-based facilitator and an international facilitator worked together to establish a governance system, develop a flood forecasting system, and make urban plan for flood disaster risk reduction in Myanmar using DIAS (Data and Integration Analysis System) as OSS

Answers/Responses to the Global Research Agenda:

The Japan National Committee discussed and summarized the answers and responses to the questions for the GRA as follows.

Questions	Answers/ Responses	Stakeholders
1. Changing	Unprecedented scale of damage and losses due to a	At global/
global/regional/national	series of earthquake and tsunami disasters are	regional/national
risk landscape	anticipated to occur in the first half of the 21st century	levels:
	in Japan. In recent years, extreme weathers, many of	Scientific
	which are increasing in frequency and intensity by	communities,
	climate change, have been recorded and	Facilitators,
	unprecedented water-related disasters have caused	On-site
	significant damages at global/regional/national levels	stakeholders
	and thus impede progress towards sustainable	including
	development.	governments,
	"Consilience" of knowledge in DRR and climate	communities,
	change adaptation (CCA) as well as sustainable	and
	development should be conducted in a comprehensive	citizen/individual
	manner "on-site" to improve resilience at	
	global/regional/national levels, thus to reduce such an	
	existential risk as the basis for sustainability through	
	promoting interdisciplinary and transdisciplinary	
	science, technology, engineering and innovation.	
	Therefore, it is necessary to create "consilience	
	knowledge base" (Online Synthesis System: OSS)	
	and cultivate and increase Facilitators who will	
	undertake development and management of OSS.	
	Such a guidance and notion would also benefit Asian	
	countries, many of which have undergone rapid	
	population growth particularly in densely populated	
	urban areas and also suffered from unprecedented	
	disasters, as well as other disaster-prone regions and	
	countries.	
2. Identify three major	As written above, "consilience" of knowledge in DRR,	At global/
research priorities	CCA, and SDGs should be conducted in a	regional/national
(refer to the Global	comprehensive manner "on-site" by establishing OSS	levels:
Research Agenda)	and fostering Facilitators, which will promote	Scientific
Theme 1:	cohesion among these important notions.	communities,
Understanding risk	On-site stakeholders, in cooperation with Facilitators	Facilitators,

creation and perpetuation in the contemporary risk landscape: systemic, cascading and complex risks:

Theme 6: Harness technologies, innovations, data and knowledge for risk reduction and effectively taking advantage of the OSS, should develop integrated scenarios for DRR and Environment/Development and execute concrete measures toward enhancement of disaster resilience and achievement of SDGs.

The scientific community should develop OSS under interdisciplinary cooperation with international scientific organizations, various on-site stakeholders, and UN/international agencies, to support enhancement of synthesis for strengthening disaster resilience and promoting sustainable development. The OSS should be equipped with functions for users to explore, collect, archive, and search in various languages, scientific information as well as information of experiences, including good practices and success/failure stories, shared from all over the world and basic information on legal systems and policies. The OSS should also have functions to integrate these data and information, conduct forecast and simulation, facilitate effective risk communications through visualization, and establish information exchange and dialogue among stakeholders. The OSS should be functional in each mother tongue so that it will be used in each country/local/community under international/regional/local cooperation.

Theme 7: Foster interdisciplinary and multi-stakeholder collaboration for solutions to risk challenges:

The scientific community should foster Facilitators in collaboration with local universities, disaster research centers, and scientific institutions and in mutual cooperation with society. Taking advantage of the OSS, knowledge, experiences, and methods suitable for their location should be provided and external experiences and resources should be effectively introduced so that on-site stakeholders can effectively enhance disaster resilience and sustainable development in an inclusive and participatory manner. To do so, Facilitators are required to assist stakeholders who effectively apply science and

On-site stakeholders including governments, communities, and citizen/individual

	technology, protect their lives and assets, and	
	continue their livelihoods and businesses.	
3.Implementing the	The newly established Japan ICoE could more	National science
Agenda/Science in	effectively and more efficiently promote coherence	community,
actions	among DRR, CCA and Sustainable Development as a	ICoE
	representative of the national science community to	
	support national and regional scientific knowledge for	
	policy and action (Theme 8). For disaster prone Asian	
	countries, all stakeholders should share issues and	
	priorities for both national and regional disaster risks	
	as well as global agreements. All communities	
	relevant with IRDR should further collaborate and	
	tackle with facing problems for improving national	
	and regional resilience.	
	International scientific organizations,	International
	UN/international agencies and international aid	scientific
	agencies should support the development of the OSS,	organizations,
	Facilitators and integrated scenarios for each country	UN/international
	and region to take actions. International and regional	agencies,
	scientific organizations should accelerate activities of	regional
	scientific communities in countries in terms of	scientific
	knowledge sharing on science and technology and	organizations,
	designing information base. UN/international	international aid
	agencies and international aid agencies should	agencies
	establish a system to assist countries to raise	
	awareness on the above, and develop and manage the	
	information base in the context of improving quality	
	and effectiveness of assistance in DRR and	
	Environment/Development fields.	
4.Other suggestions		
and comments on the		
Global Research		
Agenda		