

E-ディフェンス 鉄骨造ロッキングフレームの震動台実験

独立行政法人 防災科学技術研究所

ANIED

1. 研究目的

従来、建物の構造体は、大地震時において倒壊 を免れるが人命確保が可能なように設計されて いることが多い。しかし、大地震後の建物の修復、 建て替えを行うことは容易ではないことから、近 年では大地震後においても損傷が少なく、修復が 容易な構造体が要求されている。ヒューズ(エネ ルギー吸収部材)を有するロッキングフレームは、 これらの要求を満足する構造体の一例であり、E-ディフェンスを用いたロッキングフレームの動 的実験は、2005年より開始した NEES/E-Defense Collaboration の一環として位置づけられている。 これまで米国において、NSF(米国科学財団)の もとに設立された NEES (George E. Brown、 Jr. Network for Earthquake Engineering Simulation) $\dot{\varepsilon}$ 中心に、せん断ヒューズの実験(2006 スタンフ オード大学)およびヒューズを有するロッキング フレームの静的漸増載荷実験(2008 イリノイ大 学)が行われている。このような背景のもと、本 研究は、ヒューズを有するロッキングフレームの 動的特性を検証する実験として計画されている。

2. 実験システム

実験システムは、図1に示すように、試験体で ある鉄骨平面骨組の両脇にテストベッド(写真1) と呼ばれる慣性質量装置を3層6基配置したもの で、テストベッドと試験体をつなぎ梁によって各 層で接続することにより、試験体に慣性力を与え る。実験システム全体の寸法は、平面12m×6m、 高さ8.85mで、震動台上の全重量は約3500kNで ある。テストベッドは、1基当たりの重量が約 500kNであり、リニアスライダー(写真2)で支 持され、それ自体での水平方向抵抗力はほとんど ない。本実験システムは表1に示すように、スケ ーリングされており、寸法は約0.7倍、重量は約 0.5倍である。つなぎ梁と試験体の間にはロード セルユニット(写真3)が配置され、テストベッ ドの慣性力を測定できる計画となっている。

3. 試験体

本実験で用いるロッキングフレームの原設計 建物概要を図2に示す。ロッキングフレームは建 物内の外壁面およびエレベーターコアなどに設 置することが想定されている。本実験では、この うちロッキングフレーム部分のみを取り出して 実験を行う。試験体は、図3に示すように、スパ ン4.15m、基礎高さ0.34m、1 階階高2.81m、基準 階高2.7m、合計8.55mの3 層鉄骨平面骨組であ

図1 実験システム外観

写真1 テストベッド

写真2 リニアスライダー

写真3 ロードセルユニット

図2 原設計建物概要

る。柱・梁・ブレースは、250mm せいの H 形鋼で あり、材質は SM490A である。試験体中央には、 最上層の梁と基礎で拘束された PT ワイヤー (JIS G 3536 SWPR7BL ¢ 15.2:破断荷重 260kN)(写真 4) が8本設けられており、上下端はグリップで固定 されている(写真 5)。この PT ワイヤーは、加振 時は弾性であり、フレームに対して復元力を与え る。試験体中央最下部には、ヒューズと呼ばれる エネルギー吸収部材(せん断パネルまたは座屈拘 東ブレース、図4 せん断パネルの例)が配置され ており、加振時はこのエネルギー吸収部材のみが 塑性化する。柱脚は、浮き上がりが可能なように、 図5に示すようなディテールであり、基礎とはメ タルタッチのみで接合されていない。

4. 計測計画

震動台上での試験体挙動を計測するために、表 2に示す計測センサーを、試験体へ設置する。加 速度計は主に各階の床面に設置し、層毎の慣性力 を計測する。変位計は、層間変形、部材の局所変 形、非構造部材の変形などを計測する。歪ゲージ は弾性挙動する箇所に貼付し、試験体鉄骨の応力 度を計測する。

衣 2 計測 品 致					
加速度計	変位計	歪ゲージ	力	合計	
67	80	150	14	311	

5. 加振スケジュール

700

2751

450

加振スケジュールを表3に示す。加振は、1995 年兵庫県南部地震で記録されたJMA 神戸波のNS 成分の1方向入力、および1994年 Northridge 地 震のCanoga Park における波形とし、加振レベル ごとに所定の倍率をかけて実施する。

20倍率をかけて実施する。 450-1125-500,500-1125-450, HTB12M24 H

表3 加振スケジュール

日程	ヒューズ	加振方法		
8/6(木)	PL-22 (A0)	JMA神戸40%		
8/7(金)	PL-22 (A0)	Northridge 100%		
8/10(月)	PL-22 (A1)	JMA神戸69.1%		
8/14(金)	BRB	JMA神戸69.1%		
8/19(水)	$PL-6 \times 2 (B)$	JMA神戸69.1%		
8/24(月)	PL-22 (A2)	Northridge 140%		
VPPP 広日七キゴレ コ				

※BRB:座屈拘束ブレース

写真4 PT ワイヤー

図 4 FUSE-A0, A1, A2 詳細

640

図5 柱脚詳細

×250×12×25+2-PL-16

H