

地盤シミュレーションの高度化研究

国立研究開発法人 防災科学技術研究所 兵庫耐震工学研究センター Pal Mahendra Kumar

- 1. Introduction
- 2. Problem statement
- 3. Results so far
 - 3.1 Generation of analysis model
 - Eigen value analysis
 - Elastic analysis
 - 3.2 Elasto-plastic analysis
 - Parameter identification
 - Discussion of simulation result
 - 3.3 Incorporation of soil container mass in analysis model
 - Modeling of soil-container
 - Discussion of simulation results
- 4. Summary and future plan

はじめに

Damage to under-ground structures during strong earthquake

写真-1 中柱の圧壊および上床版の陥没

写真-4 中柱の損傷

写真-2 妻壁(海側)のひび割れ

写真-3 電気室のひび割れ状況

Pictures of damage

Damage to Daikai subway station during 1995 Great Hanshin Earthquake

1. Yamato *et al*, damage to Daikai subway station of Kobe rapid transit system and estimation of its reason during 1995Hyogoken-Nanbu earthquake,土木学会論文集No. 537/1-35, 303-320, 1996

E-Defense shake table test on soil underground specimen

• About experiment:

To comprehend a better understanding the soil-structure interaction a large-scale shake table test [2] was conducted at E-Defense in February 2012

- Reproduction of experimental results
- Study of laminar soil container modeling

^[2] Yohsuke K., Manabu N., Ikuo T. and Susumu Y.: Dynamic behaviour of underground structure in E-Defense shaking experiment, *Soil Dyn. And Earth. Engrg.*, 82, pp. 24-39, 2016.

- 3.1 Generation of analysis model
- 3.2 Elasto-plastic analysis
- 3.3 Incorporation of soil container mass in analysis model

Material properties

Mechanical	properties
------------	------------

	Density (g/cm³)	Young's modulus (MPa)	Poison's ratio
Aluminum	2.70	69.0 × 10 ³	0.34
Acrylic Plastic	1.19	3200	0.35
Dry Sand 1	1.735	1	0.3
Dry Sand 2	1.614	12.85	0.0
Cement mixed soil 1	2.245	1.0 × 10 ⁴	0.3
Cement mixed soil 2	2.245	88.48	0.3

Cases considered for analysis

	Vertical shaft and cut- and-cover tunnel	Shield tunnel	Lower layer of soil strata	Upper layer of soil-strata	Remark
Case 1	Aluminum	Alumunium	Cement mixed soil 1	Dry Sand 1	Before experiment
Case 2	Aluminum	Acrylic Plastic	Cement mixed soil 2	Dry Sand 2	After experiment

Analysis models

Non-Conformity mesh model

Conformity mesh model

Structural component: Hexahedral element **Soil** : Tetrahedral element **Interface**: using Multi-Point Constraints (MPC) **Structural component**: Tetrahedral element **Soil** : Tetrahedral element **Interface**: adaptive mesh refinement

Analysis Model

Scale of analysis

Mesh model	Elements	Nodes	Dofs
Non-conformity	1,539,094	520,959	1,562,877
Conformity	9,863,072	5,312,922	15,938,766

Mesh model	Average Computation time for each time step (min.)	Average number of CG iterations per time step
Non-conformity	64.00	13255
Conformity	1.63	1314

Computational demand*

MPC on top model Full MPC model Modeling laminar soil container

			-	
Model	1 st Mode	2 nd Mode	3 rd Mode	4 th Mode
Free	2.482	2.641	3.193	5.101
MPC on top	2.684	2.766	4.560	5.470
Full MPC	3.273	3.275	6.455	8.627
Experiment	5.27-5.56			

*The analysis is completed on Supercomputer of NIED by using flat MPI. Analysis is performed using 128 cores of SGI Altix4700 (CPU: dual core Intel Itanium processor 1.66 GHz).

Eigen value analysis

Time history against 50% JR Takatori

MPC on top has relatively better agreement with experimental results in compare with other two models namely, Free model and Full MPC model. Therefore, MPC on Top model has been chosen as appropriate analysis model.

Exponential Contractancy (EC) model

• Normal yield surface

$$F = MD \ln\left(\frac{p'}{p_0'}\right) + \frac{MD}{\eta_E} \left(\frac{\eta^*}{M}\right)^{\eta_E}$$

Where, *M* is critical state parameter, *D* is dilatancy factor, η_E is parameter controlling the shape of yield surface.

$$\eta^* = \sqrt{3/2} \| (1/p) \mathbf{s} - (1/p_0) \mathbf{s_0} \|$$

Where, p and s are the hydrostatic pressure and deviatoric stress tensor, respectively.

$$OCR = \frac{\overline{\sigma'}_{v}}{\sigma'_{v}}$$

$$R = \frac{\overline{\sigma'}_{v}}{\overline{\sigma'}_{v}}, R^{*} = \frac{\overline{\sigma'}_{v}}{\overline{\sigma'}_{v}}$$

$$R = \frac{\overline{\sigma'}_{v}}{\overline{\sigma'}_{v}} = \frac{\overline{\sigma'}_{v}}{\overline{\sigma'}_{v}}$$

The sub-loading surface shall satisfy the following conditions

- Sub-loading surface is in similar shape as the normal yield surface.
- The current stress-point is always on sub-loading surface.
- Along with expansion of sub-loading surface, the normal yield surface also expands and thereby plastic deformation occurs.
- R = 1: the sub-loading surface coincides with normal yield surface

Parameter identification

テストNo.	ho(g/cm ³)	w(%)	е	<i>S_r</i> (%)	D _r (%)	B値
002	1.99	23.22	0.64	96.15	53.45	0.84
003	1.94	16.89	0.60	74.59	67.88	0.86
004	1.96	16.92	0.58	77.28	74.99	0.82
005	1.95	16.75	0.59	74.89	70.46	0.84
006	1.95	16.44	0.59	74.61	73.71	0.82
テストNo.	試験	装置		<u> </u>	拘	東圧
002	スフ			排水	157	'kDa

002	スマート三軸試験	排水	157kPa
003	スマート三軸試験	排水	200kPa
004	従来の三軸試験	排水	50kPa
005	従来の三軸試験	排水	100kPa
006	従来の三軸試験	排水	200kPa

スマート三軸試験装置 (Nakayama, E., Kobayashi, I, lizuka, A. and Ohta, H.: Chapter 22 Development of a Portable Triaxial Testing Apparatus-Smart Triaxial, Geotechnical Predictions and Practice in Dealing with Geohazards, Chu, Jian, Wardani, Sri P.R., lizuka, Atsushi (Eds.), Geotechnical, Geological and Earthquake Engineering Series, ,Vol. 25, Springer, 2013

Material parameters

Elasto-plastic parameters			
S.No.	Parameter name	Value	
1	Dilatancy (D)	0.065	
2	Critical stress ratio (M)	1.41	
3	Irreversible ratio Λ	0.973	
4	Over-consolidation ratio (OCR)	10	
5	Yield surface shape parameter η_E	1.5	

Initial conditions			
S.No.	lo. Parameter name		
1	Initial void ratio e_0	0.585	
2	Swelling index κ_0	0.042	
3	Coefficient of earth pressure K_i	1.0	
4	Normal Yield stress $\tilde{\sigma'}_{v}$ (kPa)	180	
5	Initial vertical stress ${\sigma'}_{ u}$ (kPa)	20	

Evolution parameter			
S.No.	Parameter name	Value	
1	Sub-loading surface parameter (m_a)	5.0	
2	Super-loading surface parameter ($a = m_a/D$) 76.92		
3	Super-loading parameter (b, c) 1.0		
4	Similarity ratio for sub-loading ($R_0 = 1/OCR$)	0.1	
5	Similarity ratio for super-loading (R^*)	0.9	

$$OCR = \frac{\overline{\sigma'}_{v}}{\sigma'_{v}}$$
$$R = \frac{\sigma'_{v}}{\overline{\sigma'}_{v}}, R^{*} = \frac{\widetilde{\sigma'}_{v}}{\overline{\sigma'}_{v}}$$

<i>R</i> *	$\frac{\tilde{\sigma'}_v}{\bar{\sigma'}_v}$	$\tilde{\sigma'}_v$
\overline{R}	$\frac{\sigma'_{v}}{\bar{\sigma}'_{v}}$	$\overline{\sigma'_{v}}$

Here, σ'_v , $\tilde{\sigma}'_v$ and $\bar{\sigma}'_v$ are the stress on subloading, normal yield surface, and super-loading surface.

Displacement time history on top surface

Displacement time history on top surface

Displacement response

Acceleration time history on top surface

Displacement time history

Laminar soil container modeling

Ζ

Ľ x

S. No	Ite ms	Position		Weigh t (ton)	No of rings		Weight (ton)		Total		
1	Laminar rings	Тор		3.1	1		3.1				
		Middle	Upper	0.9	19	38	17.1	36.1			
			Lower	1.0	19		19				
		Bottom		2.5		1	2.5		41.7		
2	Slider	SA					0.159				
		SB					0.058				
		SC					1.076		1.3		
3	Rubber	Water resistance					0.50				
		Slippage						0.25	0.75		
Total weight (1+2+3):											

S. No	Position	Weight/ring (ton)	No of rings	Weight (ton)	Total (ton)
1	Тор	3.1+0.055	1	3.155	
2	Middle	1.03+0.055	35	37.975	
3	Bottom	2.5+0.055	1	2.555	43.69

Note: Additional weight of rubbers and slider is equally distributed to all laminar rings. The value of contribution is equal to (2.05/37)=0.055

Constrained condition (拘束条件)

 $\boldsymbol{r}_{1}^{t} - \boldsymbol{r}_{0}^{t} - \boldsymbol{R}(\theta_{0}^{t}).(\boldsymbol{r}_{1}^{0} - \boldsymbol{r}_{0}^{0}) = 0$ $\boldsymbol{\theta}_{1}^{t} - \boldsymbol{\theta}_{0}^{t} = 0$

Here, \mathbf{r}_{i}^{t} , θ_{i}^{t} are position and rotation vector of i^{th} node at t^{th} time step, respectively.

 $R(\theta)$ is rotation tensor corresponding to rotation vector θ

Graphical representation of laminar ring modeling

Laminar rings with lumped mass at nodes

Displacement time history on top surface

Acceleration time history on top surface

Acceleration response

Displacement time history

Effective Stress path

Summary and future work

- Acceleration time history results have good agreement with experimental results
- Except the residual deformation, displacement time history results also show reasonable agreement with experimental results.
- Incorporation of mass of laminar soil container may be essential to reproduce the residual deformation.
- Effective stress-path and e-ln(p) graph suggest that
 - Soil in the vicinity of soil-strata interface is failing
 - Plasticity is inadequately modeled
- Re-simulation by lowering the value of OCR is planned for next work in the to-do list with an aim to increase the plasticity

Thank you for listening