石英系砂岩の摩擦特性に関する研究

地震津波防災研究部門
 前田純伶

Point

■サーボ式高速剪断摩擦試験機を用いた回転剪断摩擦実験
■石英系砂岩の摩擦特性の理解
■ 地震の発生機構の解明に向けた基礎的な情報の蓄積

研究の領域

予防	応急対応	復旧•復興
	予測•情報力	
防災基礎力		

概要

地殻を構成する岩石の摩擦特性は地震時の断層すべりをコント ロールする要因の 1 つであるため，地震の発生メカニズムを理解 する上で重要な情報となります。そのため，岩石の摩擦特性に関する室内実験研究が盛んに行われてきました。先行研究から岩石の摩擦特性は岩石の種類，すべり速度，法線応力と密接な関係を持っていることが明らかにされています。また，断層す べり時に生成される摩耗物や剪断に伴う断層面の微細構造の変化も摩擦特性と密接な関係があることが，近年明らかにされ ています。

本研究では，摩擦特性が十分には理解されていない石英系砂岩の摩擦特性を明らかにすることを目的として，防災科学技術研究所つくば本所に設置されているサーボ式高速剪断摩擦試験機（図a）を用いた実験を行いました。この実験では，すべり速度と法線応力の違いが石英系砂岩の摩擦特性，摩耗特性，剪断面の微細構造および剪断面近傍の温度にどのような影響を与えるかを調査するために，すべり速度と法線応力の積（以下，入力仕事率）が異なる実験を複数回行いました。その結果，入力仕事率の増加にともない，摩擦特性，摩耗特性，剪断面の微細構造が大きく変化することを明らかにしました。 また，今年度は特に入力仕事率によって異なる剪断面の微細構造（鏡面（図b）の生成•破壊）に着目し，その詳細を明 らかにするために走査型電子顕微鏡を用いた微細構造の観察を行いました（図c）．その結果，剪断面の微細構造が入力仕事率の増加にともないナノスケールで変化していることを明らかに しました。

（a）サーボ式高速剪断摩擦試験機．黄色の矢印で示した位置に岩石試料を セツトして実験を行う．（b）剪断面に発達した鏡面．（c）剪断面の走査型電子顕微鏡観察の画像例。

今後の展望•方向性

＞摩擦発熱が剪断面の微細構造に与える影響の解明．
＞すべり距離による剪断面の微細構造の変遷の解明．
＞構成鉱物や粒径の異なる砂岩を対象とした剪断摩擦実験 の実施。

