Mathematical Background of DC3D (Part 5)

How to escape from singularities in Table 6 through 9 of Okada (1992)

This situation occurs at the point on the plane (i) in the Fig.5 of Okada (1992).
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In this case, ® = tan - in Table 6 becomes singular.

This term comes from the integration, J = fR(;Jrg)
) 1 3 1 & 1 §=¢; _
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Here we have used the mathematical formula

dn where R? = &24n2+¢?
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1 b X
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ab a \xZ ¥+ a? + b2
Nezrare
dx _ —T fora:#O,b=0
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Therefore, when q = 0, we should set @ in Table 6 to be zero.

[Column 1] Theroleof @ and the meaning to setit zerowhen q =0

|

0 forq+0

0 forg=0

When ¢&n > 0, the term 0 = tan_lj—l converges to +m/2 when we approach to the front side

of the fault surface (g — 0%), while it converges to —m/2 at the rear side (g = 07) and vice versa

for én < 0. This term gives the discontinuity across the fault when both of &, n change their

signs in the Chinnery’s operation. Such a case occurs only when the point lies on the fault surface

itself.

In Table 6, @ appears in the 1st, 2nd, and 3rd component for strike-slip, dip-slip, and tensile

faults. They are parallel to each direction of dislocations. Since the terms other than @ are

continuous across the fault surface, to set ® = 0 on the
fault surface (gq=0) gives the average of the
displacements at both sides of the fault surface
calculated from 6 = +n/2 and © = —1r/2 , while all the
other components are kept to be continuous across the

fault surface.
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Mathematical Background of DC3D (Part 5)

[2] When £ =0

This situation occurs at the point on the plane (ii ), i.e.x =0 or x = L in the Fig.5 of Okada (1992).

. _sins ¢ 2 _1n(X+qcosd8)+X(R+X)sins . .

In this case, arctan term of I, = —37ia T oo tan FRIX) 056 in Table 6 becomes singular.
. . . o__ 1 5 2R+d .

This term comes from the integration of I3 = rerd X maimz N Table 2.

(x 2§
y = y=mncosd +qgsind

d > d=nsind§—qcoss ,we need integration f;_L dé f;’_W dn .
[p = n

kR2—>€2+n2+q2=X2+n2

After substitution

At first, the integration by ¢ becomes [I0d¢ = [ [R (R1+&) &2 R32(}:?:—2)2] dg = - (Ri&)

Next, to perform integration by 7, we change integral variable n - t = X -

2 2
Using R = %X} n= LX’ dn = 2(1+t2)

1-t2 T (1-t2)2 Xdt,
¢ & 2(1+t2)
[ s = [ -——=dn = | 1o O xae
RR +d) i—i__EZX(1t§2X+21tiH;26X—qcos5)(1_t)

28 1
=2¢ | —5————dt, b?—4ac=—42cos? 8
f(X+qcos§)t2+(2Xsin6)t+(X—qcos§)dt [ foat2+bt+cd ac §7 cos

2 . _, X +qcosé)t+Xsiné 2 _ X +qcosd)+X(R+X)sind
an =

cos & £cosé = Coso An E(R +X)cosés for £cosd =0
2§ 28R+ X) for £co3d— 0
_ __ ) _
(X +qcosd)t +Xsind  n(X +qcosd) + X(R+X)siné or ¢ cos

Here we have applied the following mathematical formula for b2 < 4ac case.

1 I 2ax + b —Vb? — 4ac for b2 >4
n or ac
Vb2 —4ac |2ax+ b ++Vb? — 4ac
f dx _ 1 _, 2ax+b for B2 < 4
ax® +bx +c \/4ac—b2tan V4ac — b? or < tac
2 2
“3ax ¥ D for b* = 4ac

Therefore, when & = 0, we should set 1, in Table 6 to be zero.

[3] When R+&=0

This situation occurs at the point on the line (iii ) in the Fig.5 of Okada (1992).
the terms including R + & in their denominators in Tables 6 to 9 become singular.
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In this case, In(R + &) and



Mathematical Background of DC3D (Part 5)

The condition R+ ¢ =0 happens when é<0 and n=¢q=0 in the terms related to

fi*(é,n,—2z) in Tables 6 through 9, namely the contribution from the real fault in an infinite medium.

Since the other terms, f;%(¢,1,2), f£(,1,2), f£(§,1,2) are the contributions from the image fault, R,

the distance from the corner of the image fault, is always greater than |&|.

In Tables 6 through 9, the elements including R + ¢ in their argument or denominator in

fA(&,n,—2) related terms are In(R + &), X;;, X35, among which X;; appear as the combinations of

nX11, qX11, $X11, dX11, 1qX11, q*X11, and Xs; as the Z 4 Vv
combinations of nqyXs,, 1qdXs,, q*5X30, q*dXs,.

Here, let us consider the behavior of these w
a0 z—_p J 0<a<L
L

functions in the vicinity of the point (a, 0, —c).

Point (a,0,—c)
xX=a d=c+z=¢ (because — z isinserted)
After putting ¥y = € , p=ycosd+dsind =¢ecosé +¢&'sind =g
z=—c+¢ q=7ysind —dcosé =esind — &' cosbd = ¢,

We must evaluate f(E, Ml =f,p)—fx—Lp)—fl,p—W)+f(x—Lp—W)
=fla&)—fla—Le&)—flaeg-W)+fla—Le—-W)

@ f(&n =In(R+$)

f(a, &) =1n( a? + &2 +¢,? +a) =In

2 2\ 1/2
&°+e¢
|a|<1+1‘1722> +a

Le)=In(la—L| + L+glz+g22
f(a '81)_ n a (a ) 2|a—L|

fla, e, —W) =ln(\/a2+(W—el)2 + &,2 +a)
fla=Le-w)y=mn(J@=L7+W-e)? +&2 +(a—1))

&2 + &,2
=In |a|+a+1 2
2|al

When & - 0, & - 0, the 3rd and 4th terms become definite without any singularity.

The 1st and 2nd terms of In(R + €)|| becomes as follows.

n(lal +a+ 520 i (la—pl 4 @ony + S5
n{lal+a 21| n|la (a—1L) 2la—1]

2t+¢ =) +€2 a
ifln( g ) 1n<2(a L)+ ( L)> - lna—L for a > L
2+ &% + &,?
{Il (2a+ a2> ln21(L_;) - for0<a<l
| +€2 +€2 L—a
kln ln2(L—a) In = for a<0

}

a>L

When 0 < a < L, the point lies on the edge and the value of In(R + ) becomes infinite (singular).

When a < 0, the value of In(R + §) itself becomes infinite but cancelled out each other by Chinnery’s

operation.



Mathematical Background of DC3D (Part 5)
Here, since In(R +¢) =In(R? — &2) —In(R — ¢) and In(R? — 52)|§z§_L =0, we can use —In(R —¢)
instead of In(R + £).
For f(&,n) =—-In(R-¢)

f(a, &) =—In (\/az +e24+ 62— a) =—In
&2+ &°
2|a—L|>

fla, e —W) = —ln(\/a2 + (W —)?+e,2— a)
fla=Le-w)y=-in(J@=LZ+W )+ - (@a—L))

g2 +,2\"? &2 + &2
|a|<1+1 2) —a=—ln<|a|—a+1 2)

a? 2|al

fla—1L,&) = —1n(|a—L|—(a—L)+

When & - 0, & - 0, the 3rd and 4th terms become definite without any singularity.

The 1st and 224 terms of —In(R — §)|| becomes as follows.

| | | +€12+£22 +l | LI L +glz+822
n{lal—a 2lal n|la (a—-1L) 2la—L]
&2+ &2 &2 + &% a—1L
-1 1 =-1 fi > L
n 2a +n2(a—L) n P or a
ey (o a4 S for 0<a<lL
- — - 00
n—y-_ n(2(L —a) 20— or a
&2 + &2 &2 + &2 —a
—1n<—2a+ 1_2az >+ln<2(L—a)+21(L_;)) - —lnL_a for a<0

When 0 < a < L, the point lies on the edge and the value of —In(R — &) becomes infinite (singular).
When a > L, the value of —In(R —¢) itself becomes infinite but cancelled out each other by

Chinnery’s operation.

Therefore, in the case of R+ ¢ =0, it is appropriate to use —In(R — §) instead of In(R + &) to
avolid the numerical singularity. When the point lies on the fault edge we should add a flag of

singularity to the output.

b) f(Em) =nX1 = 1=

£ ) &1 &1 €1
a,é) = = 2 2 =22 2
lal(Ve+ e +e?+a) ol [lal(1+25E25) +a| B2 4 1alal + @)
€1
f(a_Lr81)282+82
%+Ia—LI(Ia—LI+a—L)
Flae-w) 0 v
a,& — =
! Ja? + (W —e)? + &2(Ja? + W — )% + &2 +a)
fla=Le —w) a7
a—>L,& — =
Ja@—L2+W—e)?+&*(J(@—L2>+W—g)2+e2+a—1)

When g - 0, &, - 0, the 3rd and 4th terms become definite without any singularity.

The 1st and 2nd terms of nXq1|| becomes as follows.
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Mathematical Background of DC3D (Part 5)

&1 &1

2 2 T L2 2
838t ja(al+a) EF2tla-Lila-Ll+a-L)

2 2& 0 f o1
— - or a
(&‘12 + &2+ 4a? g2+ e?2+4(a—-L)?2
{ 261 261 for 0<a<lL
= — - or a
g2+ 82 +4a% g2+ g2
281 281

fora<0

1
| _ _
{ g2+ 6% &%+¢&?

When 0 < a < L, the point lies on the edge and the value of nX;; becomes infinite (singular).
When a > L, the value of nX;; itself becomes infinite but cancelled out each other by Chinnery’s

operation.

Therefore, in the case of R+ & =0, it is appropriate to set X;; = @ to be zero to avoid

numerical singularity, ZERO-DIV. When the point lies on the fault edge we should add a flag of
singularity to the output.

(© fE&n) =qX1 =

R(R+$)

It can be applied the same discussion as (b) f(&,1) = nX;; =

R(R+$&)
= §X,, = 1cosotasing
@ fEn) =yX1 = R(R+E)
It can be applied the same discussion as (b) f(&,1) = nX;; = R(R+&)
= dx,, = 1sind-qcosd
© fEm =dXy ="
It can be applied the same discussion as (b) f(&,1) = nX;; = R(R+&)
B __m
(f) f(f: n) - nqxll - R(R+f)
£16 &1 1%
fla &) = - B
|a|( a?+g?2+ &%+ a) lal [|a| (1 +%) + a] M-I- lallal +a)
f(a_L,81)=82+82 &1&2
=2 +la-Ll(la~Ll+a-1L)
(&1 —W)e,
& —W)=
f(a, & ) \/az TV —e)% + 522(\/(12 +(W—e)2 462+ a)
f(a _ L’ . W) _ (51 - W)EZ

J@—L2+ W —e)?+&*(J(@—L?>+W —&)?+&2+a—1)

Since the 3rd and 4th terms vanish when ¢ — 0, &, = 0, we can neglect them.
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€1&3 €1&2

FEMI = ngXyll = 2 2 T2 2
ST lalal + @) Bt Ll Ll +a - L)

2&18, 2&1&, 0 f o1
- or a
&2+ &2 +4a? g2 +e2+4(a—-L)?
2¢,8 2¢,& . -
= > > == > — indefinite for0<a<l
| g2+ &% +4a% g%+ g
2¢,€ 2¢e,€

l -2 2 _—o fora<0

g2+ 62 2482
When 0 < a < L, the point lies on the edge and the value of ngX;; becomes indefinite (singular).

When a < 0, the value of nqX;, itself becomes indefinite but cancelled out each other by Chinnery’s
operation.

Therefore, in the case of R+ ¢ =0, it is appropriate to set X;; = ﬁ to be zero to avoid

numerical singularity, ZERO-DIV. When the point lies on the fault edge we should add a flag of
singularity to the output.

2

(2 f&n)= q2X11 =1

R(R+$)
It can be applied the same discussion as () f(&,1) =ngX,, = %
~ . 2R+¢&
() f(§,n) = 17Xz = nq(ncosd +qsind) zm—ss
2 2
2Ja?2+ &2 +52%2+a 2|a|+a+812?;1|82
f(a, &) = g165(&1 €Os 6 + &, sin §) 7 = €168 2
|a|3(,/a2+812+822+a) |a|3(|a|+a+w)
2|al
2 2
2|a—L|+a—L+%
fla—L &) =¢&e £ 2 1 g2\
1 2
|a—L|3<|a—L|+a—L+m)

2Ja2+ (W —g)?+e%+a
3 2
Jaz+ (W —e)2 + &2 (Va2 + (W —g)?*+ &2 +a)
2J(@—L)2+ (W —e)?+e2+a—1L
3 z
J@—L2+W —e)?+&2 (J@-L?+W—-&)?+&?+a—1)

f(la,e1 —W) = (g1 — W)e,(e — W cos §)

fla—L,egg —W)=(gg —W)ey(e — W cos 9)

Since the 3rd and 4th terms vanish when ¢ — 0, &, = 0, we can neglect them.

2 2 2 2
2a2+a|al+¥ z(a_L)Z+(a_L)|a_L|+£1 '582
FEMI = ngiXszll = &162¢ 7 — €1628

2 2
lal3 (a2 + alal +¥)

2 2y 2
|a—L|3((a—L)2+(a—L)|a—L|+¥>

3a%ei5,¢ 3(a—L)?%ey65¢

0 fi > L
4ab 4(a— L) ora
3a’e &,¢ 4(L — a)?s 6,6
{ 4q® (L — a)?(g% + &,2)? or .
4a’g,e,6 4(L — a)?s,e5¢

1

|

— - =0 f <0
U@ +6,72  (L- )2’ + 6,07 ora



Mathematical Background of DC3D (Part 5)

When 0 < a < L, the point lies on the edge and the value of 7gjX3, becomes infinite (singular).
When a < 0, the value of ngyXs, itself becomes infinite but cancelled out each other by Chinnery’s

operation.

2R+&

FETIE to be zero to avoid

Therefore, in the case of R +¢& = 0, it is appropriate to set X3, =

numerical singularity, ZERO-DIV. When the point lies on the fault edge we should add a flag of
singularity to the output.

R+&
@ f(&n) =nqdXs, =nq(nsiné — qcos 8)R3(R+§)2
It can be applied the same discussion as (h) f(&,1) = nqyX3, = nq(n cosd + g sin ) R3(R+§)2
. — A25Y. — A2 _2R+E
G fEm) = a°§Xs2 = q* (N cos 8 +q €03 6) 75773
It can be applied the same discussion as (h) f(&,1) = ngyX3, = nq(n cosd + q sin ) Rg(R:;z
20V — 2 (i & 2R+$
(k) f(fl Tl) =q dX32 =q (77 sing q Cos 5) R3(R+&)?
It can be applied the same discussion as (h) f(¢,7) = nqyXs, = nq(n cosé + q sind) R32(1;:§)2

[4] When R+n =0

This situation occurs at the point on the line (iv) in the Fig.5 of Okada (1992). In this case, In(R + 1) and
the terms including R + 7 in their denominators in Tables 6 to 9 become singular.

The condition R+7n =0 happens when n<0 and {=qg=0 in the terms related to
fi*(§,n,—2z) in Tables 6 through 9, namely the contribution from the real fault in an infinite medium.
Since the other terms, f;A(¢,n,2), fE(&n,2), f(&,1,2) are the contributions from the image fault, R,
the distance from the corner of the image fault, is always greater than |n]|.

In Tables 6 through 9, the elements including R + 7 in their argument or denominator in
fiA(é,m,—2) related terms are In(R+7), Y;1, Y3,, among which Y;; appear as the combinations of

&Y11, qY11, £qY11, and Yj,as the combinations of £2qYs,, £q%Ys,, €3Ys,, q3Ys,.

Z A Vv

Here, let us consider the behavior of these functions __..; b>W

in the vicinity of the point (0,b cosé,—c + bsin§). Point -
(0. bcos 8, e 0<b<W
—c+b sin §) W

\ z=-¢ L
—.
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X =& d=c+z=bsind —¢&,cosd
After putting {¥ = bcosd + &, sind , p=ycosd+dsind=b
Z=—c+bsind —¢&,cosd q=ysind —dcosé =¢,

We must evaluate f(&,n)|l=f0,p)—fl,p—W)—f(x—Lp)+ f(x—Lp—W)
=f(er,b) — fler, b—W) —f(eg —L,b) + f(e1 = L,b— W)

(@ f(&n) =InR+n)

f(e1,b) = ln(\/b2 +52+ 62+ b) =In

b2

512 + 522
2|b—-Ww|

f(e1—L,b)=In (Jbz F(L—e)? +e,2 +b)
fler—Lb—=W)=in(Jb-W)T+L—e)? + &2+ (b-W))

g2 +g,2\?
|b|<1+ L 2) +b

2 2

&1 +€2

=In{|b —_—
n<| | +b+ 20| >

fle, b—W) =ln(|b—W| +(B-W)+

When & - 0, &, - 0, the 3rd and 4th terms become definite without any singularity.

The 1st and 2nd terms of In(R + 7n)|| becomes as follows.

2 2 2 2
&1 +€2 &1 +€2
1 -1 - -
n(|b|+b+ 2151 ) n(lb W|+ (b W)+2|b—W|>
( &’ +8% 3 g% +&° b
In(2b + b In(2(b W)+—2(b—W) - lnb—W for b>W
_ 1 &2 + &,2 &2 + &2
=1<1In(2b+ b _HZ(W—b) el forO<b<W

Slz‘l‘gzz 512+€22 W—-b

T _HZ(W—b)ZIH " for b< 0

When 0 < b < W, the point lies on the edge and the value of In(R +7) becomes infinite (singular).
When b < 0, the value of In(R + 1) itself becomes infinite but cancelled out each other by Chinnery’s
operation.

Here, since In(R + 1) = In(R? —n?) —In(R — 1) and In(R? — nz)lzzz_w =0, we can use —In(R — 1)
instead of In(R + 7).

For f(&1) = —In(R —n)

2 2\ 1/2 2 2
fer,b) = ~In (Vb2 + &2 + &2~ b) = ~In [lbl <1 +a ;Ez ) - b] - —ln<|b| ) +%>
512 +522
2lb — W]
fler=Lb) = —In (VB> + (L =) + 2,7 - b)
fler=Lb=W)=-in(lo- W)+ L—e)? + &2 - (b-W))

flen,b—W) = —ln<|b—W|—(b—W)+

When & - 0, &, - 0, the 3rd and 4th terms become definite without any singularity.

The 1st and 284 terms of —In(R — n)|| becomes as follows.

8
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w161 b+ 2222 v — wi— b —wy 4 o2
n 20| n b=W)+ =W
512+522+1 512+£22_1 b for b> W
ST 2o-w)” "b—w or
me et G —py g S for 0<b<W
=4\ - — -
"2 n{2( It w=b) or
2 2 2 2
&1 +€2 &1 +€2 _b
—Iln (—Zb + b >+1n (2(W—b) +m> lnm for b< 0

When 0 < b < W, the point lies on the edge and the value of —In(R — 1) becomes infinite (singular).
When b > W, the value of —In(R —n) itself becomes infinite but cancelled out each other by

Chinnery’s operation.

Therefore, in the case of R +7n =0, it is appropriate to use —In(R — 1) instead of In(R + 1) to
avoid the numerical singularity. When the point lies on the fault edge we should add a flag of

singularity to the output.

_ __ ¢
(b) f(&n) =¢Y, = RGR+1)
f(er,b) = o = 1 - &
(V07 & +0) - poi[1b] (14 2552 + ] SIS bllbl+ )
€1
f(fl,b - W) =
SR wib - W+ b—w)
& —L

—L,b)=

e ) VD2 + (L —&)? + &2(b2+ (L —&)? + &% + b)
&1 —L
e1—Lb—-W)=

s ) =W+ (L—e)?+&2((b-—W)+ (L —e)?+e&>+b—W)

When g - 0, &, - 0, the 3rd and 4th terms become definite without any singularity.

The 1st and 2rd terms of ¢Y1|| becomes as follows.
€1 €1

2 2 T o2 2
B L blabl+b) S - Wb - W+ b - W)

261 261 0 forb>W
— -
812 + 822 + 4b2 812 + 822 + 4(b - W)Z or
{ 261 261 for 0<b<W
= — oo
| 812 + 822 + 4b2 812 + 822 or
| 2¢; 2&;
=0 for b< 0

812 +822 512 +£22

When 0 < b < W, the point lies on the edge and the value of £Y;; becomes infinite (singular).
When b < 0, the value of &Y itself becomes infinite but cancelled out each other by Chinnery’s

operation.

Therefore, in the case of R+1n =0, it is appropriate to set Y;; = ﬁ to be zero to avoid

numerical singularity, ZERO-DIV. When the point lies on the fault edge we should add a flag of
singularity to the output.



Mathematical Background of DC3D (Part 5)

© fEmn) =q¥1= R(Rq+n)
It can be applied the same discussion as (b) f(§,7) = &Yy, = ﬁ
— __¢%a
@ fn) =¢&q¥. = RR+1)
f(e1,b) = ffe = f182 _ €18
DI(VBT+ e+ e +b) ol 1ol (14 S55E25) | S pbiinl + )
&1&
flep,b—W) =
SR wib - Wi+ b—-w)
(&1 = L)g;
—L,b)=
e . Vb2 + (L —&)? + &2(Jb2 + (L —&)? + &% + b)
fler—Lb—W)= (&1 — L)

JoO =W+ (L—e)?+&2(/(b—-W)2+ (L —e)2+e&2+b—W)

Since the 3rd and 4th terms vanish when & — 0, &, » 0, we can neglect them.
E1& €16

fEMI = &q¥iqll = > 2 — 22 2
B o bl +b) B4 - WI(b - W +b - W)

2618 - 2612 0 forb>W
[ €12 + &2 +4b% g2+ &2 +4(b—W)?
28182 25152 . -
= — — indefinite for 0O<b<W
g2+ 62 +4b? g% + g2
2¢e,€ 2¢e,€
172 172 __p for b<0

812 + 822 512 + 522 N
When 0 < b < W, the point lies on the edge and the value of éqY;; becomes indefinite (singular).
When b < 0, the value of {qY;; itself becomes indefinite but cancelled out each other by Chinnery’s

operation.

Therefore, in the case of R +1n =0, it is appropriate to set ¥;; = ﬁ to be zero to avoid

numerical singularity, ZERO-DIV. When the point lies on the fault edge we should add a flag of
singularity to the output.

(©) f(&m) = E2qYs, = E2q L

R(R+7M)
2 2 2 2
&1 +€2 &1 +£2
f(g b) 5 2 b2+£12+822+b 5 2|b|(1+27b2>+b ) 2|b|+b+ 2|b|
1L, D) =¢&%¢ =g =g %
1 2|b|3 P reltelib) C &1’ + &? e g2 +&?)’
&7t & [bI13||b| {1+ 252 +b |b13(|b| + b + 215]
2 2
2|b—W|+b—W+ﬁ
f(fl;b —W) =&, 2
2 2
—w|3 - — &+ &°
b—w]| (Ib Wl +b W+2|b_W|>

22+ (L—&)%+e&2+b
VT @)+ (JPE+ L —e)?+e2+b)
2J(b—W)2+ (L—e)?+e2+b—-W
JO-WrP+L-e)+e? (JO-WP+AL—e)Ztel+b-W)
10

f(e1—L,b) = (L — &)%e,

fler—Lb—W)=(L-¢&)%,




Mathematical Background of DC3D (Part 5)

Since the 3rd and 4th terms vanish when ¢ — 0, &, - 0, we can neglect them.

2 2
2b2 + b|b| + S5 2

FEMI = §2qYs,ll = &%, > 2 &g,
b2 (b2 + blp| + E—5-52-)

2 2
2(b = W)+ (b - W)lb — W] + 2352

(b — W)? ((b —W)2+ (b —W)lb—W| +€122¢22)2

(3b221222 3(b — W)?e,%s,
| 4b® 4(b —W)s
3b2€12€2 4(b - W)Zglzgz
= - for 0<b<W
e e-wyerter 0
4b2£12£2 4(b - W)Zglzgz
b2(e1? + &%) (b —W)*(&* + &2)?

0 for b > W

=0 for b< 0

When 0 < b < W, the point lies on the edge and the value of £2qY;, becomes infinite (singular).
When b < 0, the value of £2qY;, itself becomes infinite but cancelled out each other by Chinnery’s

operation.

2R+7)

FECIESE to be zero to avoid

Therefore, in the case of R +1n =0, it is appropriate to set Y3, =

numerical singularity, ZERO-DIV. When the point lies on the fault edge we should add a flag of
singularity to the output.

® fEn) = Eq%Ysp = £q° i

R(R+m)
It can be applied the same discussion as (e) f(&,1) = £2qYs, = £2q Rz(f;:;)
3 3 2R+n
@ f(Em) = £¥sy = £ el
It can be applied the same discussion as (e) f(&,1) = £2qY;, = £2q Rz(f;:;)
2R+
W fEM =02 = 1 s
It can be applied the same discussion as (e) f(&,1) = £2qYs, = £2q Rz(f;:;)
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Mathematical Background of DC3D (Part 5)

[ Column 2] Singularities on the fault edge

For the case of R+ & =0 or R+1n =0, we can avoid mathematical singularity of ZERO-DIV
by putting X;,, X35, Y11, Y3, to be zero. However, for the point on the fault edge, we cannot
escape from the essential singularity.

The points on the fault surface have singularity in the sense of a double-valued. A certain
component of the displacement has alternate values depending whether we approach to the fault
surface from the front side or from the rear side. This is just the dislocation itself.

On the other hand, the points on the fault edge have more high level singularity in the sense
of a multi-valued. The displacement at these points has different value depending from which

direction we approach to the point. The next figure shows an example of such a situation.
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(top) Vertical displacement field around a Z-edge of a vertical dip-slip fault.

(bottom) Horizontal displacement field around a X- and Zedge of a vertical strike-slip fault.
[cited from Okada,Y. (2003) Paradox on vertical displacement due to a fault model, /. Geod. Soc. Japan, 49, 99-119
(in Japanese with English abstract)]
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