

●筑波技術大学 北大通り ●つくばエキスポセンター つくば駅 中央通り 土浦学園線 ●つくばセンター ●研究交流センター 南大通り 圏央道 つくば中央IC つくば牛久IC ひたち野うしく駅

防災科研

国立研究開発法人 防災科学技術研究所 国家レジリエンス研究推進センター

〒305-0006 茨城県つくば市天王台3-1 Tel. 029-863-7641 Fax. 029-863-7696 URL. http://www.bosai.go.jp/nr/

国立研究開発法人 防災科学技術研究所

国家レジリエンス研究推進センター

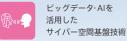
Research Center for National Disaster Resilience

RESILIFNCF NATIONAL

SIPとは

「戦略的イノベーション創造プログラム (SIP)」は、基礎研究から出口(実 用化・事業化)までの研究開発を一気通貫で推進し、府省連携による分野 横断的な研究開発に産学官連携で取り組むプログラムです。

2018年からは第2期の12課題を推進しています。


SIPの特徴

- ●社会的に不可欠で、日本の経済・産業競争力にとって重要な課題を総合 科学技術・イノベーション会議が選定。
- ●府省·分野横断的な取り組み。
- ●基礎研究から実用化・事業化までを見据えて一気通貫で研究開発を推進。
- ●企業が研究成果を戦略的に活用しやすい知財システム。
- ●国際基準·知財戦略、ベンチャー支援等の制度改革も組み込む。

実施体制

- ●課題ごとにプログラムディレクター (PD) を選定。
- ●PDが議長となり、関係府省等が参加する推進委員会を設置。
- ●ガバニングボード (構成員:総合科学技術・イノベーション会議有識者 議員)は、外部有識者で構成される課題評価WGを設置し評価を実施。

12の課題

スマートバイオ産業・ 農業基盤技術

フィジカル空間 デジタルデータ処理基盤

脱炭素社会実現のための エネルギーシステム

loT社会に対応した サイバー・フィジカル・ セキュリティ

国家レジリエンス (防災・減災)の強化

白動運転 (システムとサービスの

AIホスピタルによる 高度診断・治療システム

統合型材料開発システム によるマテリアル革命

スマート物流サービス

光・量子を活用した Society 5.0実現化技術

革新的深海資源調査技術

新技術の研究開発と社会実装を通して 「国家レジリエンスの強化」に貢献

内閣府の戦略的イノベーション創造プログラム (SIP) 第2期 (2018~2022年度)課題の一つ「国家レジリエンス(防災・減災) の強化」(堀宗朗PD、管理法人: 防災科研)において、防災科研 は5つの研究開発項目の研究開発機関(研究責任者の所属機関) や共同研究開発機関となり、これらの活動を総合的に推進する ため、防災科研内に国家レジリエンス研究推進センターを設置 (2018年12月1日) しました。

防災科研が関わる5つの研究開発項目

NR

避難・緊急活動支援統合システム開発

NR

被災状況解析・共有システム開発

NR 3

広域経済早期復旧支援システム開発

NR 5

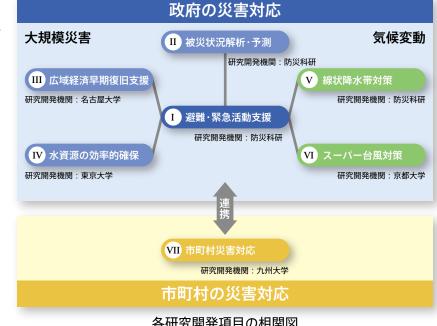
線状降水帯観測・予測システム開発

NR /

市町村災害対応統合システム開発

いること

創造プログラム 第2期


「国家レジリエンス (防災・減災)の強化」

逃げ遅れによる死者ゼロ、 広域経済の早期復旧を目指して

大規模災害が与える日本経済への甚大な打 撃による国家的危機に対し、衛星、IoT、ビッ グデータ等の最新の科学技術を最大限活用 して、国や市町村の意思決定の支援を行う 情報システムを構築します。

国家レジリエンス (防災・減災)を強化する ことにより、国難を打破し、現在、そして 次世代の人々が安心して生きていける社会 の実現をめざします。

各研究開発項目の相関図

研究推進センター

国家レジリエンス研究推進センター センター長

越 Koyuru Iwanami

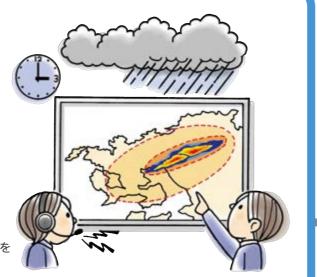
それぞれの研究を円滑に連携させ、基礎研究から社会実装までをめざす

各研究開発項目は研究統括を中心に他機関と協力して進めら れます。国家レジリエンス研究推進センターの役割は研究開発 項目間の密な連携を円滑に行い、効果を最大化することです。 SIP「国家レジリエンス (防災・減災) の強化」の特徴の一つは、 基礎研究から社会実装までを一貫して行うことにあります。 災害時における確実な避難や緊急活動のための意思決定を支援 する情報を、必要とする所へきちんと伝えていくこと。これに より、国全体が国難規模の災害を乗り越える力を持つことに

つなげたいと考えています。

2019年2月22日の成果発表会で、防災科研は新たに策定し た「防災科研のアイデンティティ」を発表しました。防災科学 技術を発展させることで人々の命と暮らしを支えていく決意を もって、国家レジリエンス研究推進センターの活動に取り組ん でいきます。

さあ、一秒でも早い予測を。一分でも早い避難を。一日でも 早い回復を。


^{研究統括} 清水 慎吾 Shingo Shimizu

NR 与線状降水帯観測・予測システム開発

線状降水帯は数時間で記録的な大雨を局地的にもたらすため

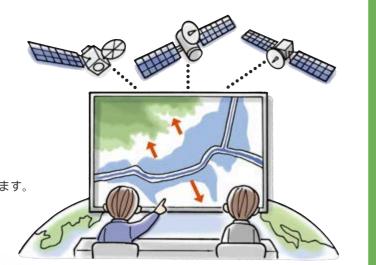
自治体による避難エリアの指定や避難勧告・指示のタイミングの判断が困難で、 住民の逃げ遅れが課題となっています。

線状降水帯観測・予測システムの運用により、地域のリスクを評価し、確実な避難を実現します。 果目標 水蒸気観測網の運用からデータ配信サービスまでを民間で実施し、国・自治体・民間での利活用を 促進するとともに、線状降水帯予測技術の国や気象会社での実用化をめざします。

Research Center for National Disaster Resilience

ID か被災状況解析・共有システム開発

衛星が観測したデータを活用し、被災状況を表す情報をいち早く抽出し、 そこから今後起こり得る事態を把握することで、


災害対応 (避難や緊急活動) のイノベーションにつなげます。

衛星が観測すべきエリアを災害前〜災害直後に推定する技術、 2内容 国内外各種衛星の観測計画を立案する技術、

観測データを一元化し解析や予測を行って、データを迅速に提供する技術を開発します。

乏しい情報下で災害対応を行う必要がある初動期において、 衛星データによる解析・予測結果が迅速に提供され、

災害対応を行う機関が活用できるシステムを実現します。

R 型難・緊急活動支援統合システム開発 異種情報統合→災害動態解析→迅速・的確な「災害対応」の支援へ

災害はある一瞬の出来事だけではありません。

景 自然と社会が相互に影響し合い、時々刻々と変化します。 したがって災害対応も、その変化に合わせて変えていくことが必要です。

国民一人ひとりや様々な組織から得られる異なる種類の情報を統合し、 時々刻々と変化する「災害動態」を捉えて時空間的に解析した 情報プロダクツで、災害対応の意思決定を支援するシステムを構築します。

災害対応システム同士が連動し、国民一人ひとりの緊急避難と避難所生活、 それを支える政府の緊急活動(保健医療福祉支援、物資供給支援等)が、 滞りなく迅速・的確に行われ続ける仕組みをめざします。

大規模災害を力強くしなやかに乗り越えるために

大規模な地震や火山災害、気候変動により激甚化する風水害から、国全体の被害を最小化するためには、

政府と市町村の対応力を今以上に強化し、国民一人ひとりの命を守る確実な避難、

広域経済活動の早期復旧を実現していかなければなりません。

国家レジリエンス研究推進センターでは、衛星やAI等を活用した新技術の研究開発を行い、

その成果を府省庁や市町村で最大限にいかすべく活動しています。

R 7 市町村災害対応統合システム開発

災害対応の最前線における迅速・合理的な意思決定に向けて

激甚化する風水害における犠牲者ゼロを実現するためには、適時的確な避難行動が必要です。 市町村では、進展する災害状況の迅速な把握と、

それに基づく合理的な対応判断が課題となります。

膨大な情報を解析し、対応の判断に必要な情報を提供するAIを開発します。

特にAIや情報システムの進化と、人と組織の判断力・対応力の向上を

同時に実現するための訓練環境を開発します。 多様な災害シナリオを簡単に想定し、

R目標 多様な状況下での判断や対応を検討·訓練できるシステムを構築します。

個人や組織の訓練を支援し、風水害時の対応力の全国的な底上げを図ります。

(研究責任者 九州大学 塚原 健一)

研究統括 藤原 広行 Hiroyuki Fujiwara

NR 3 広域経済早期復旧支援システム開発 巨大災害に対する経済被害を推定し、災害対応を強力に支援

南海トラフ巨大地震は、広域に甚大な被害をもたらすと予想されています。 このような災害に見舞われた場合においても、産業の早期復旧を果たし、 経済的損失を最小限に抑える対応の策定が急務となっています。

南海トラフ地震等の巨大災害が日本経済全体および各地域に与える影響を定量的に 評価できる広域を概観した経済被害予測システムを開発し、 経済的損失を最小限に抑えることをめざします。

平時には企業のBCP策定や地域の災害対策計画に活用でき、発災時には、企業、 成果目標 政府や自治体等の災害対策本部が参照し、生産施設やライフラインの復旧手順の最適な 判断を支援するシステムの開発と実装を行います。

(研究責任者 名古屋大学 西川 智)

鈴木 進吾