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INTERNAL DEFORMATION DUE TO SHEAR AND TENSILE 
FAULTS IN A HALF-SPACE 

BY YOSHIMITSU OKADA 

ABSTRACT 

A complete set of closed analytical expressions is presented in a unified 
manner for the internal displacements and strains due to shear and tensile 
faults in a half-space for both point and finite rectangular sources. These 
expressions are particularly compact and systematically composed of terms 
representing deformations in an infinite medium, a term related to surface 
deformation and that is multiplied by the depth of observation point. Several 
practical suggestions to avoid mathematical singularities and computational 
instabilities are also presented. The expressions derived here represent power- 
ful tools both for the observational and theoretical analyses of static field 
changes associated with earthquake and volcanic phenomena. 

INTRODUCTION 

Because our geophysical observations are restricted to near the ground sur- 
face, theoretical studies to derive expressions of various physical quantities at 
the surface of a half-space have primary practical importance. In a previous 
paper (Okada, 1985), we have obtained a complete set of compact closed analyti- 
cal expressions for the surface deformation due to inclined shear and tensile 
faults in a half-space. The newly added solution for the surface displacement, 
strain, and tilt arising from tensile fault was successfully applied to the 
modeling of the 1986 Izu-Oshima eruption (Tada and Hashimoto, 1987; Ya- 
mamoto et al., 1988), and the 1989 Off-Ito eruption (Okada and Yamamoto, 
1991), both of which took place in the central part of Japan. As to the dynamic 
problem, the exact expressions for surface displacement and strain due to a 
shear fault in a half-space were respectively derived by Kawasaki et al. (1973, 
1975) and Okada (1980), using the Cagniard-de Hoop method. On the other 
hand, static changes of surface gravity and piezomagnetic fields due to the 
dislocation sources in a half-space were formulated by Okubo (1989) and Sasai 
(1980), respectively. Recently, Pan (1989) added explicit expression for the 
surface displacement due to a point shear source in a transversely isotropic and 
layered half-space. 

In this paper, we extend our previous work to the internal deformation fields 
due to shear and tensile faults in a half-space. The investigation of them is no 
less important than that of surface deformation. The expressions of such a field 
are necessary for rigorous interpretation of the strain and tilt data observed in 
deep boreholes. And, more essentially, they can contribute to the theoretical 
consideration of the seismic and volcanic sources, since they can account for the 
deformation fields in the entire volume surrounding the source regions. 

Table 1 summarizes the progress to get analytical expressions for the internal 
deformation fields due to point and finite rectangular sources in a half-space. 
Steketee (1958) gave the expi~ssion for internal displacement field due to a 
point source of vertical strike-slip type in a Poisson half-space. Maruyama 
(1964) extended this work to arbitrary vertical and horizontal point sources. 
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Later, the internal displacement fields due to point sources in a general 
half-space were derived by Yamazaki (1978) for a horizontal tensile source, and 
by Iwasaki and Sato (1979) for an inclined shear source. However,  neither the 
expression for internal displacement field due to an arbi trary point tensile 
source nor tha t  for internal strain field due to any type of point source in a 
half-space are published. 

As for finite rectangular sources, Chinnery (1961, 1963) gave the expression 
for internal displacement due to a vertical strike-slip fault in a general half- 
space. Mansinha and Smylie (1967, 1971) derived the formula to calculate 
internal displacement field due to an inclined shear fault in a Poisson half-space. 
Converse (1973) extended this work to a shear fault in a general half-space and 
added the formula for all displacement derivatives. Alewine (1974) also ob- 
tained the expression for internal strain field using Mansinha and Smylie's 
(1971) equations, although the differentiation was performed only in horizontal 
direction. Later, by a different approach, Iwasaki and Sato (1979) obtained the 
expressions for all the internal strain components due to an inclined shear fault  
in a general half-space. Recently, Yang and Davis (1986) added the solution for 
internal displacement field due to an inclined tensile fault in a general half- 
space, together with a computer program to calculate the internal displacement 
and strain. But  their formula cannot be applied to a vertical tensile fault. As is 
shown in Table 1, a work that  t reats  the internal deformation fields for all the 
cases in an unified manner  does not exist. Furthermore,  the published closed 
analytical expressions are generally too lengthy and complicated and hard to 
grasp their physical meaning. The first objective of this paper is to give a 
complete set of compact and systematic formula to calculate displacement and 
strain fields at depth as well as at the surface due to inclined shear and tensile 
faults in a general half-space for both point and finite rectangular  sources. 

Since the calculation of surface and internal deformation due to the formation 
of shear and tensile faults in a half-space is a fundamental  tool for the 
investigation of seismic and volcanic sources, many practical systems to calcu- 
late them are in operation at various sites (e.g., DIS3D at U.S. Geological 
Survey; Erickson, 1986). In these systems, the expressions of Mansinha and 
Smylie (1971) as well as Yang and Davis (1986) are widely employed and 
translated to FORTRAN codes. However, they sometimes cause numerical  
problems for some special conditions. For example, since one of the integration 
ranges of Mansinha and Smylie's (1971) formula is taken along down-dip 
direction, it will become indefinite when the fault surface approaches horizon- 
tal. Also, it is not seldom that  existing programs fail to give proper answers by 
facing zero-divide or zero-argument in logarithm and so on. The second objective 
of this paper is to state practical methods for avoiding such mathematical  
singularities and computational instabilities, which are inherently contained in 
the analytical expressions. 

POINT SOURCE 

We start  from the formula to calculate the intenml displacement field due to 
a single force in a homogeneous half-space. If we take the Cartesian coordinate 
system, as shown in Figure 1, uJ(xl, x 2, xa; }1, }2, }3), the ith component of the 
displacement at ( x 1, x 2, x 3) due to the j t h  direction point force of magnitude F 
at (~1, ~2, 43) can be rewri t ten from the formula by Mindlin (1936) or Press 
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FIG. 1. A coordinate system adopted in this  study• 

(1965) as follows: 

ui (  xl ,  x2, x3) = u/A( x , ,  x2, - ~3) - u/~(  xl ,  x~, x3) 

+ ulB(~I, x~, x~) + x~ulc(x~, x~, x3) 

• F {( 2 ~ij R i R j }  
u/A : s%-; - o~)~  + o~ R-- T 

• F { ~ i j  R iR  j i - a [  5ij R i~ ja-Rja ia (1-~ ja)  
u [ B - 4 m ,  --R + R - - - 5 - + -  - - +  ol R + R a R( R + R3) 

- RiRj  ( 1 -  ~i3)(1- ~j3)]] 
R( R + Ra) 2 

• __F (1-2~t3) ( 2 - a )  +c~}3 
U[c = 47r1~ ~ R 3 R 5 ' 

(i) 

where, c~ = (h + tt)/(h + 2/D; h and/~ are Lam£s constants; 5ij is the Kronecker 
delta; and R 1 = x  1 -  ~1, R 2 = x 2 -  ~2, R s =  - x s -  ~s, R e = R 1 2 + R 2 2 + R 3 2 .  
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Here, UJA(Xl, X2,-  x3), the first te rm in equation (1), is the well-known 
Somigliana tensor, which represents the displacement field due to a single force 
placed at ((1, (2, ~a) in an infinite medium (e.g., Love, 1927). The second term, 

J UiA(Xl, X2, X3), also looks like a Somigliana tensor. This te rm corresponds to a 
contribution from an image source of the given point force placed at (~ 1, (2, - ~ 3) 
in the infinite medium, although the polarity of the image source is switched 
from one component to another  so as to cause the surface displacement to 
vanish when it is combined with the first term. The third term, U~B(Xl, X 2, X3), 
and uJc( x 1, x~., x 3) in the fourth te rm are natural ly depth dependent. When we 
put x 3 to be zero in equation (1), the first and the second terms cancel each 
other, and the fourth te rm vanishes. The remaining term, U/B(Xl, X2,0), re- 
duces to the formula for the surface displacement field due to a point force in a 
half-space (Okada, 1985). Thus, the fundamental  equation to describe the 
internal  displacement field due to a point single force in a half-space can be 
composed of two infinite medium terms (part A), a surface deformation related 
term (part B), and a depth multiplied term (part C). 

In order to get the presentation for displacement fields due to strain nuclei, 
we need ~k-derivative of the equation (1). It is expressed as follows: 

au / (~ ,  x~, x3) - 
a~k 

OulA Ou/~ 
= a---T(x,,x~,-x3) o~ (x~,x~,x3) 

o.i. o.i~ 
+ 0f -(k xl' x2, x3) + X3--(a~k x l '  x2, $3) (2) 

oui  ° 

a~k 87r~ 

OU~B F { R iS j k  "t- R j~ ik  -- R k ~ i j  

O~k - 47r~ - R 3 + 

1 - a [ 63k R + R k 6ik6j3 
+ [ R ( R  + R~) ~ ~i~ - 

+[Ri~3-  

[ R i ~  + 

+ R(R + 

OuJc = F---F--(1- 2 

5 

+a R3 

RiSjk + Rj~ik RiRjRk } 
+ 3~ R5 

3RiRjRk 
R 5 

- ~ j ~ i 3 ( 1  - 6 ~ 3 )  

R(R + R3) 

R2513(1 - 5j3)] 5ahR2 + Rk(2R + R3) 
Ra( R + R3) 2 

RJaik 26akI~+Rk(3R+Ra)]  ]1 
R~)2 - R~Rj Ra( R + Ra)3 (1-  5ia)(1- 523) 

• . -- ~ikSj3 3Rk(RiSj3 -- Rj(Si3 ) 

R5 5ak + 3a(3 R~ R 7 " 

Now, let us advance to a practical problem. We consider three different point 
dislocation sources as well as an inflation (or explosive) point source, as shown 
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in Figure 2. All the point sources are assumed to be placed at (0, 0, - c) of 
(x, y, z) coordinate system, where the x axis is taken parallel to the fault  
strike. The sense of the strike slip is left lateral for sin 8 > 0 (0 < 6 < =) and 
right lateral for sin 8 < 0 ( -  = < 6 < 0). The sense of the dip slip is reverse fault 
for sin 26 > 0 (0 < 6 < ~r/2 or - ~  < 6 < - ~ / 2 )  and normal fault for sin 2 6 < 0 
( ~ / 2 < 8 < ~ o r - T r / 2 < 6 < 0 ) .  

According to Steketee (1958), the displacement field ui(xl, x2, xa) due to a 
dislocation A uj(~ 1, ~2, $3) across a surface ~ in an isotropic medium is given by 

1 [ Ouln ( OU~ k ] u,: / / + ,u< (3) 

where summation convention applies, and Pk is the direction cosine of the 
normal to the surface element dE, i.e., (0, - sin 8, cos 6) in the present case. 
Based on this formula and body force equivalent relations, the internal displace- 
ment field, u °, corresponding to each point source can be expressed by a 
combination of the displacement fields due to strain nuclei, OuJ/O~k, as follows. 

(a) Strike-slip point source (moment = Mo): 

= - - - + - -  s i n 6 +  + 6 . (4) 
F 0~2 0~1 / 0~3 0~1 / 

Z 

~ X  

STRIKE 

(2+'~")Mo 

DIP TENSILE INFLATION 
FIG. 2. Geometry of four different point sources, whose in ternal  deformation fields are listed in 

Tables 2 through 5. See text  as to sign convention for the slip vectors. 
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(b) Dip-slip point source (moment = Mo): u° (0u  0u2) ] 
= - ~ -  ~ + ~  c o s 2 6 +  0}a 0}2 sin28 . 

(c) Tensile point source 

(intensity = ()x/g) M o isotropic part  and 2 M  o uniaxial part):  

u° 
= F 1 - ~  0}, + 2  0}2 0}8 

- + ~ sin28 . 

(d) Inflation point source (intensity = Mo): 

M o Ou" 
n ° _ 

F 3} n " 

(5) 

(6) 

(7) 

We can obtain closed analytical expressions for each displacement field by 
substituting equation (2) into equations (4) through (7). The final results and 
their  x, y, and z derivatives are given in Tables 2 through 5 ,  where 

3x 2 5x 2 7x 2 
A s =  1 -  R--- £ A ~ =  1 -  R-- ~- A 7=  1 -  R- ~ -  

3y 2 5y 2 7y 2 
B 8=  1 -  R-- ~ B 5=  1 -  R-- T B 7=  1 -  R-- T 

3d 2 5d 2 7d 2 
C s =  1 -  R-- T C 5=  1 -  R-- ~ C 7=  1 -  R-- T (s) 

In these tables, the top, middle, and bottom equations in each compartment  
represent the x, y, and z components, respectively. Necessary information to 
calculate the actual fields are included in each table. The total deformation field 
excluding tha t  of the z derivative is expressed by a composition of two infinite 
medium terms (part A), a surface deformation related term (part B), and a 
depth multiplied te rm (part C). The internal  strain and stress fields can be 
easily evaluated using the following relations. 

l (Ou  i Ouj) 
% =  2 0xj  + ' (9) 

ai j = )xekk~ij + 2geij .  (10) 

FINITE RECTANGULAR SOURCE 

Next, we consider three different finite rectangular  sources, as shown in 
Figure 3. Sign convention for the slip vector is same as in the previous section. 
If we define fault length, L, along the fault strike direction, and width, W, along 
perpendicular direction to the strike, internal  deformation field can be derived 
by taking x -  }', y -  ~'cosS, and c - ~ ' s i n 8  in place of x, y, and c in the 
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INTERNAL DISPLACEMENT FIELD DUE TO A POINT SOURCE IN A HALF-SPACE. THE TOP~ MIDDLE~ 

AND BOTTOM EQUATIONS IN EACH COMPAR~TMENT CORRESPOND TO X ,  Y,  AND 

COMPONENT~ESPECTIVELY. 

D i s p l a c e m e n t  d u e  to  a Po int  S o u r c e  at  (0, 0 , - c ;  g,M0) 

Mo u'(~,~,z) : ~ [<,(~, ~, ~) - u~(~,~, -~) + %(~,~,~) + ~ ~(~,  ~, ~)" 

Type  

S t r i k e  

M~ 

u~ 
1 - c~ q a 3x2q 

+ 
2 R 3 2 R 5 

1 -- c~ x ~ 3xyq 
2 ~-~s in842 R s 

1 -- a x a 3xdq 
- ~  cosS ÷ 

a 3xpq 
Dip 2 R s 

1 -  c~ s o~ 3ypq 
2 R s 4 2  R ~ 

1 - a t ~ 3dpq ~ --T-n -x +~ m 
1 - a x a 3xq 2 

T e n s i l e  I 

[ 2 n s  2 R ~ 
I 

2Mo[ 1 - a  t a 3yq 2 

..q,"..~/ 2 R a 2 R s 

~:'..~.~"~M~ 1 - a s a 3dq 2 
2 R s 2 R ~ 

Inf la t ion  i - - -  - -  
/ . . - - - ,  2 R ~ 

1 - a y  
2 St 3 

1 - a d  

R ~ 

3x~ q 1 - ~ I~ sin 6 

3xyq 1 ~ a I~ sin 5 
R~ 

3cxq 1 ~ a I,~ sin 6 
R~ 

3xpq 
R~ + I~ sin ~ cos 

3ypq 1 - a ~  
RS + I~s inScos5  

3cpq 1 - a 
R~ + - - ~ - -  I~s inScos5  

d : c -  z p : ycos5 + dsin6 
R 2 = x 2 + y2 + d ~ q = y s i n 5 -  dcos5 

+ # s = psin5 + qcos5 
a = ) , + 2 #  t = p c o s g - q s i n 6  

3xq 2 1 - a 

3yq ~ I - a I~ sin25 

3cq ~ 1 - 
R ~ a I~ sln~5 

1 - o r  
e~ R 3 

1 - a y  
o~ R 3 

1 - a d  

R ~ 

n~ 
A3 3cq 

-(1 - a ) ~  cos6 + ~  ~¢A~ 

3xy 3cx [slnS - 5yq] 
(i - a)~-cos~ +,~-~ R2 J 

.3~y 3c~ [¢os~ + ~dq ] -(1 - a ) ~ -  sin5 + a  -~- 

• 3xt  15cxpq 
(i- ~)~-~ -~ n~ 

1 -(1 - a)~-~[cos 26 - -~]+a3ytl -~.g[s3C r _ --~'-15yPq l 

Az 3c -(1 - a ) ~ s i n S c o s 5  +or - ~ [ t  + --'~-j5dpq] 

3xs 15cxq 2 3xz 

1 3c 5yq 2 ] 3yz (I - a)~-~[sin 25 - 3ys l  a 

-(1 - a)R~[1 -A3 sin26] - a --~[s-d-t----~-]3c ' 5dq23 + a  3dzR ~ 

• 3xd (i - ~) ~-¢ 
,3yd 

(i - ~ ) ~  

1 ~ 3 R + d  ] x 2 R + d  

~[  1 ~ 3 R + d  ] 1 x2 2 R + d  

~ =  ~ - Y  ~ J  g = R ( - - ( E ~ -  m ( R + d )  ~ 

e q u a t i o n s  o b t a i n e d  i n  t h e  p r e v i o u s  s e c t i o n  a n d  b y  p e r f o r m i n g  t h e  i n t e g r a t i o n  

foLd~' ]2 Wd~f . (11) 

Fo l lowing  Sato  and  M a t s u ' u r a  (1974), i t  is conven ien t  to c h a n g e  t h e  i n t e g r a -  
t i o n  v a r i a b l e s  f r o m  ~' ,~ '  to  ~, y by  

(12) 
P - ~ / '  = 7 '  

w h e r e  p = y cos  6 + d s i n  6, a s  before .  A f t e r  al l ,  w e  n e e d  to s u b s t i t u t e  ~, ~ cos 
+ q s i n  6, ~/s in 5 - q cos6 ,  a n d  ~ / in  p l a c e  o f  x, y ,  d, a n d  p in  t h e  e q u a t i o n s  for  

p o i n t  s ou rces ,  w h i l e  k e e p i n g  z a n d  q u n a l t e r e d .  In t h i s  case ,  e q u a t i o n  (11)  
b e c o m e s  

/ff -Ld~ / ; -  Wd~. (13) 
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TABLE 3 

X D E R I V A T I V E S  OF T H E  E Q U A T I O N S  IN T A B L E  2 .  

X - d e r i v a t i v e  o f  d i s p l a c e m e n t  d u e  to  a P o i n t  S o u r c e  at  ( 0 , 0 , - c ;  6, Mo) d = c - z  p=~cos6+dsln6 
R 2 ~ z ~ + y ~ + d  ~ q = y s l n 6 - d c o s 6  

A+p s = p s i n g + q c o s g  

A + 2~ t = ~ cos 6 - -  qsin6 

T y p e  

Str ike  

M~ 

Dip 

Tensile  

2M~ 

,<}>/" 

I n f l a t i o n  - - -  - -  

. - -  -... 

~ / ~  
1 -- c~ 3zq  a 3zq  

R~ +-~ - ~ ' ¢ ( I + A s )  

1 - e~ A3 a 3~q 

I -~ A3 .. cx 3dq 

a 3pq 

I -- o~ ~ s  a i5~ypq  
2 R ~ 2 R 7 

1 - v~ 3~tt a 15zdpq 
2 R ~ 2 R z 

1 -  ~ A3 a 3q ~ 

1 - -a  2~$t a 15zyq ~ 
2 R s +~" a '  

1 - - e  3 z s  c~ 15zdq ~ 

2 R ~ +~ R '~ 

1 - c ~  A~ 

2 R ~ 

1 - c~ 3z  v 

2 1~ ~ 

i - c~ 3zd  
2 R s 

~ q  l - a . 

-~'As3C q - ~ - K ~  sin 5 

3 p q A  + ~ - ~  d~ sin 6 cos 6 - ' ~ ' T  s 

tS~y~qR ~ + ~ - ~  d~ sin 6 cos 6 

15c~pq + ~ - ~ " ~ K ~  sin ~ cos 
R ~ 

~ A~ L ~ j~ sin~6 

l ~ z y q  2 1 ~o d~ sin~ 6 
R~ 

15cz~R. r i -~ ~h'~ sin~5 

I - c ~  A3 

1 - ~ 3zd 

a-~/a~ 
Sz 15czq 

(1 - ~ ) ~ ( 2  + A,)¢os6 - ~- - -~- - (2  + A~) 

3~ 3c [ . 5yq ] 
(I - ~) ~A~ ~,~ ~ + ,~ ~ [~ ~ ¢ - 

3y 3c r 5dq ", 
- ( i  - o ) ~ A : i ~  6 + ~ p  . . . .  g +  ~ - A J  

M l&c~q 
(I -- ~ ) ~ A ~  - ~ " - - ~ A 7  

3~ 5yt  lSc~ 791~ q 

3x 15c~ r 7dpq 

3s 15c4 ~ 3z 
-(I - ~)~A~ + ~ --~--A~- -- Rs A~ 

5~ r . 5ys~ 1Say r 7yq~ 15zyz  

3z ~ 15c~ 7dq ~ (, - ~)~-[,-(~+As),in 61+ ~--~ [, -d+ ~-] - ~ 15zdz 

3d A 

15~yd 
-(~ - ~) 'he" 

3~ 
-(i - ~ ) -~Cs 

2 R + d  o r 3n+~ 5n~+ ~m+:J K; = _ v [ ~ _  :sR=+gm+3d~] 
[ 2 R + d  2 8 R 2 + g R d + 3 d ~ ]  

Aa yo o 3~y - - -  

The final results of the evaluation of integral (13) for each component of 
displacements and their x, y, and z derivatives are given in Tables 6 through 9, 
where 

1 2 R + ~  
X n  - R(  R + ~ ) X32 - R~( R + ~)2 X~3 = 

1 2 R + ~  
Yll R ( R  + 7) Y32 = R3 (R + 7) 2 

sin 
h = q c o s ~ - z  Z 3 2 -  R3 h Ya2 

Yo = Yn - ~ 2 Y3e go = Z32 - } e z53 

Y53 = 

Z53 - 

8 R  2 + 9R~ + 3~ 2 

R~(R + ~)3 

8 R  2 + 9R~ + 3~  2 

RS( R + ~)3 

3 sin 5 
R 5 bY53 

(14) 

and II denotes Chinnery's notation to represent the substitution 

f(},~)lI =f(x ,p)- f (x ,p-  W)- f (x-L ,p)  + f ( x -L ,p -  W). (15) 

Again, the total deformation field excluding that of the z derivative is 
expressed by a composition of two infinite medium terms (part A), a surface 
deformation related term (part B), and a depth multiplied term (part C). The 



S H E A R  A N D  T E N S I L E  F A U L T S  I N  A H A L F - S P A C E  1027 

,< 

,-2 

< 

© 

m 

m < 

E~ 

© 

< 

~1~ ~ ~+ 

'N ~ 'N 

II II II 

-~, .~, 

II II II II 

% 
+ 

% 

+ ÷ 

1,1 

~ + 

m + 

~1~ ~1~ 
+ I + 

~lk ~1~ ~lk 

I 

I 

g 

., I~ ~ I~ ~1~ 
I I I I I I 

I 

I 

° ! 

+ 1 ~ '  ~ 

+ i ~ i + 

¥ ~ -7- .~ 

I~ "~ I~ ~1~ 
I I I 

I I 

IX 121 
+ + + 

I I 

I I I I I I 

~1,~ ~1~ 
~ 1 ~  ~ 1 ~  

+ + 

# ~  + . + . ~ +  

I I 

~1!o o2o 
I I I 

+ 

~1~ ~1,~ Zl~ 

I I I 

I I 

!1 ! ~J 
I I 

I 

I I 

~ o ~  ~ ~ ~ ~1~ ~1 ~ 
I I 

"-~-~,~1 "-' . .... 



1 0 2 8  Y. O K A D A  

z 

© 

o ~  

~4 

z 

< 

< 

~1~ ~ 
+ ~ +  

II II II 

LI II II II 

% 
I -  
% 

+ -i- 

I1 II 

o- 

,,,e 

4~ 

~s ~s 
-I- + 

i I 

I 

÷ ~ .~ 

+ + + 

~° ~ ~1~ 
-I- ~1~  

,~  ~ 1 ~  ~ s l ~  
+ ÷ 

+ 

II 

N 

+ + 
. ~ .  ~ ,~ 

I i I 

~2 

E ~ • : ~  -~ 

I I I 

I t I 

! 21 ~1 
I "t- 

I I I 

I 

~ l ~  ~ 1 ~  ~ 1 ~  
+ + 

~1~ ~1~ 
+ i 

~1~ 
+ + 

N I ~  L i 

' ~  ' I I ~ n  
~ '~  ~1~ ~ 

~ '  

- -I- 

~1~ ~ 
+ + I 

if,1 

~1~ ~1~ ~1~ 
I I I 

I I 

; ; I ]  
+ .+ I 

+ 

~l~ ~l~ ~i~ 
esl,~ ~sl~ ~ l , ~  

I t I 

I -.1,- 

"N 

I 

÷ 

I I I 

I I 

I 

I I 



S H E A R  AND T E N S I L E  F A U L T S  IN A H A L F - S P A C E  

Z 

- C  

~ X  

1029 

• 9 / u// " : 2 : : :  

. / I "  

S T R I K E  D IP  T E N S I L E  
FIG. 3. Geometry of three  different finite rec tangular  sources, whose in terna l  deformation fields 

are listed in Tables 6 through 9. See text  as to sign convention for the  slip vectors. 

physical meaning of several constants or variables that  appear in these tables 
and equation (14) are i l lustrated in Figure 4. 

For simplicity of expressions, the top, middle, and bottom equations, fl, f2, 
and f3, in each compartment of Tables 6 through 9 do not directly correspond to 
x, y, and z components f~, fy, and fz. Instead, fl = fx, f2 = fy cos ~ + fz sin ~, 
and f3 = - f y  sin 5 + fz cos ~ are displayed for parts A and B. The lat ter  two 
correspond to the components in the up-dip and normal directions of the real 
fault, i.e:, the directions parallel to the (p)  axis and opposite to the (q) axis in 
Figure 4, respectively. On the other hand, for part  C fl = f~, f2 = fy cos ~ - 
f~ sin 3, and f3 = - f y  sin 5 - fz cos ~ are displayed, the lat ter  two of which 
correspond to the components in the image directions of those for parts A and B, 
i.e., the directions parallel to p axis and opposite to q axis in Figure 4, 
respectively. So, we must  carry out the following conversion to get the x, y, and 
z components of each quantity. 

fy = f2 cos 5 - f3 sin 5 

fz = f2 sin 5 + f3 cos 

{ f x  = 

[y f 2 c ° s ~ - f a s i n ~  

fz - f 2  sin ~ - f3 cos ~ 

for parts A and B, (16) 

for part  C. (17) 
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DISCUSSION 

In the preceding sections, a complete set of closed analytical expressions was 
derived in a unified manner  for the internal displacements and strains due to 
shear and tensile faults in a half-space for both point and finite rectangular  
sources. We have basically followed Iwasaki and Sato's (1979) formulation, 
adding-the new expressions for internal deformation fields due to a general 
point tensile source and a vertical finite tensile fault, as well as the internal 
strain field due to an arbi trary point source. Obtained formula were presented 
with table forms in Tables 2 through 9. Since they are particularly compact and 
systematic, they will not only save computational costs but  also diminish 
probable coding errors. 

All the formula are composed of infinite medium terms (part A), a surface 
deformation related term (part B), and a depth multiplied term (part C). As a 
subset of these formula, the deformation in an infinite medium can be expressed 
by a term that  includes u~(x,  y , -  z) for point sources and fA(~,y,_ Z)]I for 
finite faults. Also, the surface deformation can be expressed by the following 
subset: 

u(x ,  y,0) = Us(X, y,0) 
0 U  0 U  B 

= ( x , y , 0 )  (18) 
(19) Ou Ous 

~ ( x , y , 0 )  = Vf-y (x,y,O) (2O / 

(21) 
0u s 0u 2 0uA (x, y, o) + y, o) + uc (x ,  

(x '  y ' ° )  -- Oz --iT-z (x' y,o). 

Next, let us discuss the mathematical  singular points that  are included in the 
expressions derived in the previous sections. We will investigate practical 
methods to avoid these mathematical  singularities, as well as ways to avoid the 
computational instabilities that  occasionally arise for some special conditions 
and cause trouble in the course of numerical calculation. 

In the case of a point source, the problem is simple. The equations listed in 
Tables 2 through 5 become singular only when R = 0, because the factor 
R + d, which is included in the denominators of I °, J° ,  and K ° is always 
positive unless R - - 0 .  The case R = 0 occurs when an observation point 
coincides with the source position. Since this kind of singularity is so essential, 
we cannot remove the difficulty. The practical way to avoid the trouble is to set 
the output to a flag for a sufficiently small R. 

In the case of a finite rectangular  source, we also cannot escape from the 
essential singularities that  arise when an observation point lies on the fault  
edges. We must  set the output to a flag, as before. Apart from these intrinsic 
singularities, there exist other kinds of mathematical  singularities, which can 
be classified in the following four categories. They arise at special points, as 
il lustrated in Figure 5. For these singular points, we can avoid trouble by 
applying the following rules to the equations in Tables 6 through 9. These rules 
were found by returning to the integral (13) and carefully checking each special 
case. 
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z q"\ 

X f, 
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h \ 
1 . . . .  . . . . . . .  

(p) ~qL.... -- ''=' (x,y,z) 

FaL P ~ 
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FIG. 4. Physical meaning of some constants  and var iables  t ha t  are related to an  image faul t  

surface and appear  in  Tables 6 through 9. The axes, (p)  and (q), which are related to the real  fault, 
correspond to the  p and q axes for the  image fault. The positive x axis is out of the  page. 

(i) W h e n  q = 0 (this occurs on the  p lanes  t h a t  include the  fau l t  surface and  
its image),  set O in Table  6 to be zero. 

(ii) W he n  ~ = 0 (this occurs on the  ver t ica l  p lanes  t h a t  include the  edges t h a t  
are  pe rpend icu la r  to the  faul t  str ike),  set I 4 in Table  6 to be zero. 

(iii) W h e n  R ÷ ~ = 0 (this occurs a long the  l ines ex tend ing  the  edges t h a t  
are  para l le l  to the  faul t  s t r ike  and  x < 0), set all t he  t e rm s  t h a t  conta in  R + 
in t he i r  denomina to r s  to be zero and  replace  l n (R  + ~) to - l n ( R  - ~). 

(iv) W he n  R ÷ y = 0 (this occurs a long the  l ines ex tend ing  the  edges t h a t  a re  
pe rpend icu la r  to t h e  fau l t  s t r ike  and  p < 0), set all the  t e r m s  t h a t  conta in  
R + ~ in t he i r  denomina to r s  to be zero and  replace  l n (R  ÷ 7) to - l n ( R  - 7). 

On the  fau l t  surface excluding its edges, the  above ru le  (i) sets the  displace- 
men t  para l le l  to dis locat ion vector  to the  average  of the  d isp lacements  at  bo th  
sides of the  faul t ,  whi le  all the  o ther  components  are kep t  to be cont inuous  
across the  faul t  surface.  
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FIG. 5. The places where mathematical  singularities appear in the expressions for the deforma- 
tion field due to a finite rectangular source. Shaded parts show the fault plane and its projection 
onto the free surface. Marks (i) to (iv) correspond to the conditions described in the text. (a) is for 
the case, sin 5 > 0, while (b) is for sin 5 < 0. 
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I n  t h e  p r a c t i c a l  s i t u a t i o n s ,  t h e r e  a r e  t w o  p r o b l e m s  w i t h  a p p l y i n g  t h e  a b o v e  
fou r  ru l e s •  F i r s t ,  e v e n  i f  one  of  t h e  a b o v e  c o n d i t i o n s  is  m e t  m a t h e m a t i c a l l y ,  t h e  
n u m e r i c a l  c o n d i t i o n  m a y  n o t  be  s a t i s f i e d  b e c a u s e  o f  c o m p u t a t i o n a l  e r r o r s .  
Second ,  i f  t h e  c o n d i t i o n  i s  n o t  e x a c t l y  s a t i s f i e d  b u t  i s  n e a r l y  s a t i s f i e d ,  t h e  
n u m e r i c a l  r e s u l t s  m a y  g i v e  u n r e a s o n a b l y  b i g  v a l u e s .  To o v e r c o m e  t h e s e  d i f f i -  

5 . . . . . .  
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• . 5 k i n  " ' ' ' . . . . .  5x10-5 • 

(C} 

FIG. 6. An example of the internal deformation field due to an inclined dip-slip fault. Figure 8 
shows the configuration of the fault model and the observation plane which crosses the fault 
surface. (a) Contour map of the volume dilation. A parallelogram shows the projected fault surface. 
The solid line shows part of the fault plane that lies above the observation plane, while the dashed 
line shows one below the observation plane. (b) Vector map of the in-plane displacements. (c) 
Distribution of the 3-D principal strain projected onto the observation plane. 
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culties, one can apply the above rules when the quantities, $, 7, or q becomes 
sufficiently small ra ther  when they are exactly zero. By the same reason, the 
alternate expressions for /, J ,  and K needed for the calculation of vertical 
faults ( ~  lr/2) in Tables 6 through 9 should be used when cos ~ is sufficiently 
small rather  when it is exactly zero. 

NUMERICAL RESULTS 

Based on the presentations in Tables 2 through 9 and taking into account the 
practical considerations discussed in the preceding section, we have established 
a computer program to calculate internal deformation fields due to a multiple 
source that  can be arbitrari ly composed of shear and tensile faults of both point 
and finite rectangular  types. The program can draw contour, vector, or tensor 
maps of in-plane or normal components of displacement and strain on an 
observation plane arbitrari ly oriented in the half-space. Figure 6 shows an 
example of the output from this program system. Here, a contour map of volume 
dilatation, a vector map of in-plane displacements, and a distribution of pro- 
jected 3-D principal strain are displayed on a plane crossing the fault  surface 
(Fig. 8 shows the fault  configuration). 

As another example of the numerical calculation, Figure 7 il lustrates the 
schematic 3-D deformation of an elastic half-space due to slip on a buried 
vertical strike-slip, dip-slip, or tensile fault. The figure shows a 50 x 50 x 50 
km cube within an elastic body assuming that  the top of the cube represents the 
free surface. A vertical fault  is assumed to be located at the center of the block 
with a length of 20 km and a height of 10 km, occupying a depth range from 10 
to 20 km. Three perpendicular arrows denote the displacement amplitude in 
units of 0.1 U, where U stands for the dislocation amount. 

Next, let us see an example of the depth dependency of the strain and tilt 
fields due to a buried finite rectangular source. As is i l lustrated in Figure 8, the 
size of the fault is assumed to be 12 x 8 km, and the slip is 50 cm. These 
parameters  approximately represent  a magnitude 6 ear thquake source. Assum- 
ing )~ = ~, c = 10 km, and ~ = 40 °, the strain and tilt beneath an observation 
point (x, y) = (25, 15 km) were evaluated. For the case of the tilt observations, 
we should be careful because of the difference between the physical quant i ty  
observed by water-tube t i l tmeters and that  by pendulum-type borehole tilt- 
meters. The former measures a u z/ax, whereas the latter measures Ou~ ~Oz. On 
the ground surface, both quantit ies coincide in amplitude with each other, 
because a~z= tt(auz/ax + Oux/az ) must vanish at the free surface of a 
half-space. 

Figure 9 shows the depth variation of the above quantities, Ouz/ax and 
- a u  x/az,  as well as that  of an areal dilatation A = au~/Ox + Ouy/Oy. Accord- 
ing to this figure, the strain or tilt rapidly changes even at very shallow depths. 
So, when we use strain or tilt data observed in sufficiently deep boreholes, we 
must be cautious to compare the observation with theory. 

To any interested researchers, the author is ready to provide the source code 
for subroutine programs that  correspond to Tables 2 through 9. 
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FIG. 7. Schematic 3-D deformation of an  elastic half-space due to slip on a vertical strike-slip, 
dip-slip, or tensi le  fault. The block has  a size of 50 km, the  top of which corresponds to the  free 
surface. The vertical faul t  is 20 km long and 10 km wide extending from 10 to 20 km depth. U 
stands for the  dislocation amount.  
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FIG. 8. An example of the  t i l t  observations at  ground surface and in a borehole. Note t ha t  a 
water-tube t i l tmeter  (WTT) measures  a u z / ax ,  while a borehole t i l tmeter  (BHT) measures  a u~/az. 
A shaded oblique plane crossing the  faul t  surface corresponds to the observation plane in Figure 6. 
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FiG. 9. The depth dependency of Ou:~ZOz, -auz lOx and areal dilatation ~ =  aux/ax + aUy/ay 
beneath the observation point illustrated in Figure 8. A unit of strain is 10- . 
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