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INTERNAL DEFORMATION DUE TO SHEAR AND TENSILE
FAULTS IN A HALF-SPACE

By Yosamrrsu OkADA

ABSTRACT

A complete set of closed analytical expressions is presented in a unified
manner for the internal displacements and strains due to shear and tensile
faults in a half-space for both point and finite rectangular sources. These
expressions are particularly compact and systematically composed of terms
representing deformations in an infinite medium, a term related to surface
deformation and that is multiplied by the depth of observation point. Several
practical suggestions to avoid mathematical singularities and computational
instabilities are also presented. The expressions derived here represent power-
ful tools both for the observational and theoretical analyses of static field
changes associated with earthquake and volcanic phenomena.

INTRODUCTION

Because our geophysical observations are restricted to near the ground sur-
face, theoretical studies to derive expressions of various physical quantities at
the surface of a half-space have primary practical importance. In a previous
paper (Okada, 1985), we have obtained a complete set of compact closed analyti-
cal expressions for the surface deformation due to inclined shear and tensile
faults in a half-space. The newly added solution for the surface displacement,
strain, and tilt arising from tensile fault was successfully applied to the
modeling of the 1986 Izu-Oshima eruption (Tada and Hashimoto, 1987; Ya-
mamoto et al., 1988), and the 1989 Off-Ito eruption (Okada and Yamamoto,
1991), both of which took place in the central part of Japan. As to the dynamic
problem, the exact expressions for surface displacement and strain due to a
shear fault in a half-space were respectively derived by Kawasaki et al. (1973,
1975) and Okada (1980), using the Cagniard-de Hoop method. On the other
hand, static changes of surface gravity and piezomagnetic fields due to the
dislocation sources in a half-space were formulated by Okubo (1989) and Sasai
(1980), respectively. Recently, Pan (1989) added explicit expression for the
surface displacement due to a point shear source in a transversely isotropic and
layered half-space.

In this paper, we extend our previous work to the internal deformation fields
due to shear and tensile faults in a half-space. The investigation of them is no
less important than that of surface deformation. The expressions of such a field
are necessary for rigorous interpretation of the strain and tilt data observed in
deep boreholes. And, more essentially, they can contribute to the theoretical
consideration of the seismic and volcanic sources, since they can account for the
deformation fields in the entire volume surrounding the source regions.

Table 1 summarizes the progress to get analytical expressions for the internal
deformation fields due to point and finite rectangular sources in a half-space.
Steketee (1958) gave the expiession for internal displacement field due to a
point source of vertical strike-slip type in a Poisson half-space. Maruyama
(1964) extended this work to arbitrary vertical and horizontal point sources.
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Later, the internal displacement fields due to point sources in a general
half-space were derived by Yamazaki (1978) for a horizontal tensile source, and
by Iwasaki and Sato (1979) for an inclined shear source. However, neither the
expression for internal displacement field due to an arbitrary point tensile
source nor that for internal strain field due to any type of point source in a
half-space are published.

As for finite rectangular sources, Chinnery (1961, 1963) gave the expression
for internal displacement due to a vertical strike-slip fault in a general half-
space. Mansinha and Smylie (1967, 1971) derived the formula to calculate
internal displacement field due to an inclined shear fault in a Poisson half-space.
Converse (1973) extended this work to a shear fault in a general half-space and
added the formula for all displacement derivatives. Alewine (1974) also ob-
tained the expression for internal strain field using Mansinha and Smylie’s
(1971) equations, although the differentiation was performed only in horizontal
direction. Later, by a different approach, Iwasaki and Sato (1979) obtained the
expressions for all the internal strain components due to an inclined shear fault
in a general half-space. Recently, Yang and Davis (1986) added the solution for
internal displacement field due to an inclined tensile fault in a general half-
space, together with a computer program to calculate the internal displacement
and strain. But their formula cannot be applied to a vertical tensile fault. As is
shown in Table 1, a work that treats the internal deformation fields for all the
cases in an unified manner does not exist. Furthermore, the published closed
analytical expressions are generally too lengthy and complicated and hard to
grasp their physical meaning. The first objective of this paper is to give a
complete set of compact and systematic formula to calculate displacement and
strain fields at depth as well as at the surface due to inclined shear and tensile
faults in a general half-space for both point and finite rectangular sources.

Since the calculation of surface and internal deformation due to the formation
of shear and tensile faults in a half-space is a fundamental tool for the
investigation of seismic and volcanic sources, many practical systems to calcu-
late them are in operation at various sites (e.g., DIS3D at U.S. Geological
Survey; Erickson, 1986). In these systems, the expressions of Mansinha and
Smylie (1971) as well as Yang and Davis (1986) are widely employed and
translated to FORTRAN codes. However, they sometimes cause numerical
problems for some special conditions. For example, since one of the integration
ranges of Mansinha and Smylie’s (1971) formula is taken along down-dip
direction, it will become indefinite when the fault surface approaches horizon-
tal. Also, it is not seldom that existing programs fail to give proper answers by
facing zero-divide or zero-argument in logarithm and so on. The second objective
of this paper is to state practical methods for avoiding such mathematical
singularities and computational instabilities, which are inherently contained in
the analytical expressions.

PoinT SOURCE

We start from the formula to calculate the internal displacement field due to
a single force in a homogeneous half-space. If we take the Cartesian coordinate
system, as shown in Figure 1, u/(x,, x5, x3; £1, &5, £3), the ith component of the
displacement at (x,, x,, x3) due to the jth direction point force of magnitude F
at (£, £,, £5) can be rewritten from the formula by Mindlin (1936) or Press
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Fic. 1. A coordinate system adopted in this study.

(1965) as follows:

uij(xl’ X3, x3) = uijA(xl’ Xg, — x3) - uijA(xl’ X3, xs)

+ u/p( %1, %2, %3) + x3u] (%1, %35 %3) (1)

| 5, R.R,
ul:]A_ 87(‘[1.{(2_0‘)—1%4_0! RSJ}
i F 5y R.R; . 1-af &; N R;d;3 — Rdis(1 - 8j3)

‘27 4xu|R T RP a | R+ Ry R(R + R3)

— P (1 -85)(1 -6,
R(R +R3)2( o) ’3)”
. F R.b6.,— R, 6;; 3R.R;
_ V3 7Vi3 z i

o= 1 - 200) (- ) T 4 g [0 2],

where, « = (A + p)/(M + 2p); N and p are Lamé’s constants; 6, ; is the Kronecker
delta;and R, = x;, — £, Ry = x5 — &5, Ry = —x, — &5, R2= R, + R,> + R;%.
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Here, uj,(x,, X5, — %3), the first term in equation (1), is the well-known
Somigliana tensor, which represents the displacement field due to a single force
placed at (£,, £5, £3) in an infinite medium (e.g., Love, 1927). The second term,
uf 5(%,, X5, x3), also looks like a Somigliana tensor. This term corresponds to a
contribution from an image source of the given point force placed at (£, &5, — £3)
in the infinite medium, although the polarity of the image source is switched
from one component to another so as to cause the surface displacement to
vanish when it is combined with the first term. The third term, u;g(x;, x5, %3),
and uo(x;, X, x3) in the fourth term are naturally depth dependent. When we
put x, to be zero in equation (1), the first and the second terms cancel each
other, and the fourth term vanishes. The remaining term, u;g(x,, %5,0), re-
duces to the formula for the surface displacement field due to a point force in a
half-space (Okada, 1985). Thus, the fundamental equation to describe the
internal displacement field due to a point single force in a half-space can be
composed of two infinite medium terms (part A), a surface deformation related
term (part B), and a depth multiplied term (part C).

In order to get the presentation for displacement fields due to strain nuclei,
we need £,-derivative of the equation (1). It is expressed as follows:

auij au{A auijA
—(xq, Xy, x3) = ——— (%1, X3, — X3) = —— (%1, X3, X
e (7, 10) = e, = m0) = S )
auijB dulc
+—(%xy, X9, X3) + X Xq, X, X 2
2 (1, 50) g (o x) (D)
duly F {(2—a)ﬁ RS+ RS, +3aRiRJ-Rk}
0, 8wp R®Y R3 R®
dujlp F {— R + Bdu = Redy 3R,R,R,
g, 4 R3 R®
1 - 63kR -+ Rk o 3ik6j3 - 6jk5i3(1 e 6]3)
a |R(R+Ry)* " R(R + Ry)
83, R? + R,(2R + Ry)
[ J3 J 3( J3)] R3(R+R3)Z
R, + Rjaik_R .253kR‘3+ R,(3R+ R;) (= 5.)(L= 5,)
R(ER+R,)> ' RYR+Ry) 2 7
auic _ F (1 _ 26 ) (2 _ a) 6jk6i3 - Slkﬁﬁ + 3Rk(R16J3 - RJ513)]
g, 4wp & R? RS
+0£|;-}—2J§— __—}_25—1]53]6-'— 30523[ s _JR5 J—‘ R; ] .

Now, let us advance to a practical problem. We consider three different point
dislocation sources as well as an inflation (or explosive) point source, as shown
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in Figure 2. All the point sources are assumed to be placed at (0,0, — ¢) of
(x, y, z) coordinate system, where the x axis is taken parallel to the fault
strike. The sense of the strike slip is left lateral for siné > 0 (0 < § < 7) and
right lateral for sin § < 0 (~ 7 < 6 < 0). The sense of the dip slip is reverse fault
for sin26 >0(0<é<w/20r —w < § < —7/2) and normal fault for sin26 < 0
(r/2<é<mor —m/2<6<0).

According to Steketee (1958), the displacement field u,(x,, x5, x5) due to a
dislocation Au/(£,, £,, £5) across a surface X in an isotropic medium is given by

Bu{ auf
u;, = F//Au[ kag u(s—g+ ag.”"kdz’ (3)

where summation convention applies, and », is the direction cosine of the
normal to the surface element dZ, i.e., (0, — sin §,cos §) in the present case.
Based on this formula and body force equivalent relations, the internal displace-
ment field, u®, corresponding to each point source can be expressed by a
combination of the displacement fields due to strain nuclei, du’/d%,, as follows.

(a) Strike-slip point source (moment = M,):

M, ou’ au ou'  9ud
u' = —|- sind + | — + ——|cos 8|. (4)
F 352 351 d&3 23
Z A y
> X

STRIKE DIP TENSILE INFLATION

Fig. 2. Geometry of four different point sources, whose internal deformation fields are listed in
Tables 2 through 5. See text as to sign convention for the slip vectors.
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(b) Dip-slip point source (moment = M,):

M,|{ou® ou® 05 ou®  du?) 05 )
— ||l + = fjcosl20+ | — — — }sin .
F dg3 &,

o

u =

VER 3¢,

(¢) Tensile point source

(intensity = (N/u) M, isotropic part and 2'M, uniaxial part):

My|{2a~10u® ou? ou®
u = — +2 sin® & + ——cos? §
Fl1-a 3, At 23
ou? ou®) 05 6
~|— + —|sin25|.
623 a£2 ( )
(d) Inflation point source (intensity = M,):
. M,ou" .

We can obtain closed analytical expressions for each displacement field by
substituting equation (2) into equations (4) through (7). The final results and
their x, y, and z derivatives are given in Tables 2 through 5 , where

3x2 5x2 Tx?
Ag=1-—05 As=l-—05 Ar=1-—5

3y? 5y? 7y?
Bomloge Bolrgm Bl g

3d* 5d? 7d?
Gl-g Gl Gt ®

In these tables, the top, middle, and bottom equations in each compartment
represent the x, y, and z components, respectively. Necessary information to
calculate the actual fields are included in each table. The total deformation field
excluding that of the z derivative is expressed by a composition of two infinite
medium terms (part A), a surface deformation related term (part B), and a
depth multiplied term (part C). The internal strain and stress fields can be
easily evaluated using the following relations.

;(3& a) ©)

e.:. + —Z
Yoo2\0x;  dx,

0;; = Neppd,; + 2pe;;. (10)

FiniTE RECTANGULAR SOURCE

Next, we consider three different finite rectangular sources, as shown in
Figure 3. Sign convention for the slip vector is same as in the previous section.
If we define fault length, L, along the fault strike direction, and width, W, along
perpendicular direction to the strike, internal deformation field can be derived
by taking x — £, ¥ — ncos 8, and ¢ — y’sin § in place of x, y, and c in the
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TABLE 2

1025

INTERNAL DISPLACEMENT FIELD DUE TO A POINT SOURCE IN A HALF-SPACE. THE TOP, MIDDLE,
AND BOTTOM EQUATIONS IN EACH CON;WMENT CORRESPOND T0 X, ¥, AND Z

COMPONENTS, RESPECTIVELY.

7

Displacement due to a Point Source at (0,0, —c; §, M) d=c—z = yc.osﬁ +dsiné
R2=z2 4 y2 4 42 g=ysiné —dcosé
N _ Moy o o N _ Aty s =psind + gcosd
u (:c,y,z)_m[uA(x,y,z)—uA(a:,y,—z)+uB(a:,y,z)+zuc(1,y,z)] =T ¢ = peosé — gsin
Type uy up ug
. 1—a a 3z2 3% l1-a ., A ch
Strike 3 —}% t3 qu ———R—sq - I siné -(1- a)—ig- cosé +a 72?
l-a z a 3zyq 3zyg 1 o . 3zy T 5yq
% S F 6+2—R—5— o I siné (1—a)—-—cos§ +a—ﬁg[sm6 Rz]
1—-a z o 3zd 3exg —-—a ., . 5dg
My = I—i—scosﬁ+§Tg— " Iy siné —(1—0/)72? sind +a—ﬁ;[cos6+ f{]
. o 3zpg 3zpg l-a , 3zt 15czpg
Dip TE | TE + Ipsindcosd| (1-— oz)ﬁ— - G
l-—a s a3ypg | 3ypg  l-0a . . 1 3yt 3e 5ypg
B +§ B |t —a_ll siné cosé | —~(1 a)——-[cos 26 - E7]+a R5 [s = ]
- 1- 5d
Mo L 2a Rt; +;3;';q -—:%zg+ algsin5cos6 _(1_a)R3 sinfcosé  + pq]
- 2 2 _ 3 3.
Tensile ! 20 % _%3;§ ‘1}%%_ —1 aaIg sin?6 —(l—a)% +1115;;q —a%
M, 1- 13 3yq*® 3yg? 1- . 3¢ 5yg? 3yz
} /yu 2a = —% }y{z __},1/245 - I sin®s (l—a)——[sm% Ig:]+a'ﬁ;[t——y+~——f; ] ;!5
fed _ 2 2 _ 5dg? 3d
/,*\—Mu L 20}—;5 ;3;;45 3‘%—1 I3 sin®$ —(1—0:)—[1 — Az sin 6]—0{%65—[ —a‘,+%] aR—:
. l-a z l-a =z 3zd
Inﬂftmn i — (1~a) 7
ST 1-a 1-ay 3yd
:\t/‘; - ‘1% 3 A —a)=
> iR « R R
lM l1-a d l-a d 1-mC
Ty R o« B R
1 , 3R+d . 2R+d
= - = I I = -ty e—a—
i y[R(R+d)2 e R3(R+d)3] = R3 L + = TR AR
1 , 3R+d 1 . 2R+d
= - L= —
& “[MR+@2 nyR+®J SSRERD  B(R+P

equations obtained in the previous section and by performing the integration

L w
[fag["ar.
0 0

(11)

Following Sato and Matsu’ura (1974), it is convenient to change the integra-

tion variables from &', to £, 9 by

{x -§ =t
p-n =9

|

(12)

where p = ycos 6 + dsin §, as before. After all, we need to substitute £, 5 cos &
+ g sin 6, nsin 6 — g cosd, and 5 in place of x, y, d, and p in the equations for
point sources, while keeping z and ¢ unaltered. In this case, equation (11)

becomes
x—L p—Ww
/ dg / dn (13)
x P
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TABLE 3

X DERIVATIVES OF THE EQUATIONS IN TABLE 2.

X-derivative of displacement due to a Point Source at (0,0, —c; §, Mp) d=c—z p=ycosd+dsind
R2= g% +y2 4+ d? g=ysin§ ~dcosd
du° My Bu‘ Juy Atp 2= psinb+qcoss
o) = 22 [ e, ) - Gbte -+ G e+ 2 G 0,0 as ik et i
Type u’ [8z Buy [6z sul oz
. 1—a 32 a 3z 3zq 3
suike |- 45 lawan | -2 9014 a0~ 1% s sins (1 - )52+ As)coss ~al5°#(z+,4,)
1—a As 3yq . 3¢ Suq
% —2— ﬁsm6+-§ —FAs - & 1siné (- a)—Ascos6 +ags [A_r, siné — R—m]
1—a A o 3dg 3e l—o . 5d.
My -2 oS Ay RfAs -~=2Kgsins —u —a)—AgsmS +a——[A5 cos 5+ —Tqm]
. 3 3, 1- .
Dip %%As —:g?q/ls + aa Jysinfcosd| (1 —oe)ﬁAs —-a 1';?:(1,47
1—a 3zs a l5zxypg 15zypg l-—o N Yyt licz Typg
%//' - -2 g +—u—J;’sm5cosS (1—04)'—[60525 R2] e a——R—Z]
1- o 3zt a 15zd; 15, 1- . 3z 5
M, - -7 Rqu -%t,,p—q +~a—aK§ sinfcosé| (1 —-q)R {2+ As) sin 6 cos 6 — alﬁc‘z—[t+ %1;2]
. i—a A @ 3 3 1—o .
Tensile 3 ﬁ% -3 7;-1-5—145 Hqs As -~ J3 sin?8 —(1— Q)E;A5 +a ISRC.? Ar—a REA-"
2My| 11— o 3ut a 15zyg? L5wyq? l-a Sys Ler 7 15
T TS TR - — Jg sin?6 —(1—0)-— sm26——y—~] —a——-—[t— y_qQ] ;:ﬂ
\ /‘
WAL ) 1o 3e a 152dg? 15ceg? l—e, ., ., 15ecz Tdg? 15zdz
4 e 3w - i K3 sin®s (I—a) [ —(2+4)sin’6 ]+ o g [n—d+—ﬁ~] e
N a ds 1-o A
Inflation | — B — JT: (1- o‘)1_2.5.,45
\1/ l—o ey 1-a3zy L
/ \ 2 RS o R I
1 1~ o 32d 1—« 3zd
Ml 5w e ~i- )50
3R+d 5R? + 4Rd + d* o 2R+d 8R? + 9Rd + 342
Jf = —8zy -2? K=~y —2?
t R(R+4d)3 R(R+ d)* B R3(R +d)? RSB +d)?
el 3 322 2 5R% +4Rd + 4% K“——z[ 2R+d B8R+ O9Rd+3d°
= mmRsy T T RRe 2 BRI VT RETD
= 3zy o 3ad
B=t2- =-FE-u As“_—ﬁ—l(z

The final results of the evaluation of integral (13) for each component of
displacements and their x, y, and z derivatives are given in Tables 6 through 9,

where
x 1 2R + £
11—R(R+S) 32—R3(R+€)2
- 1 - 2R + 19
1T R(R + ) " R¥R + 1)
sin 6

h=q0056—2 Z32=—R—3——'hY32
Y0=Y1‘§2Y32 ZO=Z2‘E2Z53

8R% + 9Rt + 3£2

53 =

R%(R +¢£)°
Y, = 8R? + 9Ry + 39°
R3(R +n)°
3sin 6
Zigg = 73— — h¥s3

(14)

and | denotes Chinnery’s notation to represent the substitution

f(&, 7))

=f{x,p) — flx,p— W) —f(x~L,p) + f(x ~ L, p— W). (15)

Again, the total deformation field excluding that of the 2z derivative is
expressed by a composition of two infinite medium terms (part A), a surface
deformation related term (part B), and a depth multiplied term (part C). The
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Fia. 3. Geometry of three different finite rectangular sources, whose internal deformation fields
are listed in Tables 6 through 9. See text as to sign convention for the slip vectors.

physical meaning of several constants or variables that appear in these tables
and equation (14) are illustrated in Figure 4.

For simplicity of expressions, the top, middle, and bottom equations, f;, f5,
and f;, in each compartment of Tables 6 through 9 do not directly correspond to
x, y, and z components f,, f,, and f,. Instead, f, = f,, fo = f, cos 6 + f, sin 6,
andf; = —f,sind + f, cos § are displayed for parts A and B. The latter two
correspond to the components in the up-dip and normal directions of the real
fault, i.e., the directions parallel to the (p) axis and opposite to the (g) axis in
Figure 4, respectively. On the other hand, for part C f; = f,, f, = f,cos 6 —
f.siné, andf; = —f,sind — f,cos & are displayed, the latter two of which
correspond to the components in the image directions of those for parts A and B,

e., the directions parallel to p axis and opposite to ¢ axis in Figure 4,
respectively. So, we must carry out the following conversion to get the x, v, and
z components of each quantity.

fx = f1
fy=1fzco86 — fysind for parts A and B, (16)
fz=f2 Sin5+f3cosﬁ

fx = fl

fy=1ryco86 ~ fysiné for part C. (17)

f.= —fasiné — fycosd
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TABLE 6

INTERNAL DISPLACEMENT FIELD DUE TO A FINITE RECTANGULAR SOURCE IN A HALF-SPACE.
SEE TEXT AS TO THE MEANING OF THE TOP, MIDDLE, AND BOTTOM EQUATIONS

IN EACH COMPARTMENT.

Displacement due to a Finite Fault at (0,0, ~c; §, L, W,U)

_ d=c~z R =249 +¢
u,(z,y,z)—U/%‘[ "1""1"‘“1"’“"1] p=ycosd+dsiné g=ncosd+gsind
uylz,p,2) = Ufon[{ef — 84 + 28 +20f) cos 6 — (14 — & +uf +245) siné] g=ysin6—dcoss i= ,,,m,s_qcosg
u,(z,y,z)=U/2w[(u‘2‘—ﬁg+uf—zu§)|in6+(n3 - 54 4 uf ~zuS) cos ] a=(A+p)/(A+2p) E=d+

=z L 1g=p- -
wt = Al 2 @ =frEm-a)]  P=PEna|  «f =6
Type 1 I Jd
: © o l-a .
Strike 5-+-2—£qYu —~£q¥11—-© - Iy siné (1~a)¢Yyscos § —alqZs
U aq q i—a § . cos &
[=) s Il B,

1-a o l-o .

- In(R+7) —;qz Y1 T Y - Iysiné (1—a) g¥11 cos & —a 7{3 —zYy +¢€ Z;g]
. ag a4 - . ., cos d . cq

Dip IR R +t— I3sin§cos & (1 a) -qYusmﬁ—a—é;
U 2] l1-a . ~ -
5 % ngXyy ~7qX1 —© -— Ri-i sindcos§| (1—a) fXu —a2ngXs;
! :: ;] l-a 1— . =~
- WRH) -5 SfXu ¢ Xn +—a£ Iysinécos § —dXyy ~ &Yy sin b —a T [X11 — ¢* X3}
- —a 1- . in &
Tensile | — In(R4-7) —%q’Yu Y ——;E Iysin?§ —-(1—a) [51-;%- +g¥y3 cos 6] —alz¥1) — ¢? Za0]
Ui 1-a a 1-a ¢ . . =, -
@ - In(R+¢) -7 X Xy +_a_ e sin® 6 (1—a) 2¢Yq1sin 6 +dXy —ac {Xu — q’X;gg]
0 o 1— . - -
'{'Eq(ﬂxu'f'fyu) Q(ﬂX11+EY11)-e‘—agf45m25 (1—0)[§X11+EYa3 cos ] +a q[EnXaz + £ Zas)
=ton-15L L=t cosf~Iysins L= 3y + Isi
@ =tan g f Y cos 4810 s =In(R+d) + Iysiné
-t ¥
L= vy vy o cosz6 [ln(R+r;)—sm61n(R+d)] ( 2[R+d (R+d)’ =In( R+1,)] if cosb= 0)
2.3, 2 sind ¢ 2 1 M X+qcos 8) + X(R+X)sin b 1 &y .
= =200 5 1 = =
Xi=t4q L con6ﬁ+d+cosza§ o ¢(R+X)cos s (1‘ 2 (R+4d)? if cosd 0)
TABLE 7
X DERIVATIVES OF THE EQUATIONS IN TABLE 6.
X-derivative of Displacement due to a Finite Fault at (0,0, —c; 6, L, W,U)

- d=c—~z R=492+4°
aux/ax(;,y,;):ujzx[j{—j{‘-ﬁ-jfﬁ-zjf] p=ycos§+dsind F=7ncosd+ gsiné
Bu,f0e(z,y,2) = Ufon (4 —T+iB +25F) cos 6 — (j4 =74 +iP +255) sin 6] g=ysind—dcosé d= gsmé geosé
8u,/82(2,y,5) = Uf2n (34 54 +58 —2 55 sin 6+ (4~ T4 -458 2 ) cos 6] a=0+p)/(+2p)  T=d+

=o-L(1=p-W - . .
# =07t [5ale,m, DI H=ostfocm || P =07 0elem || F =aff foule,m, 2|
Type 854 |9z a8 18z 84° 5=
s 1 1— .
Strike | — —2‘9‘QY11 - gé2qY32 £2qYss = = Jy siné (1-a)Yocosé —aqZy
u o {q éq l-o . 3ciq
-3 i —-—a——Jz siné {1~ a)¢ [ ] +o ¥
1- 1- .
! : ;1 . a£Y11 +5£,;2 Yoo | —6q*Yay - a"‘ J3 siné ~(1 ~ a)¢q¥3cos6 +0!£[—!—-zY32 Zaz—Zo]
. 1- . .
Dip —%% % + aQJ‘i sinécosé —(l—a)ﬁ%cos§+5q}’335m5+a ;iq
u q @ g F] $eng
AL R3 +qYu + J_:, sindcosé | —(1~ a)ﬁi +a R
Z : f] i—al o g 2 1— . d
< E +§% —% + p Jp sinbcosd E——Ygsm6+a——[1——]
Tensile | - L= ey + 2 SifYe | —iPYn - 122 ) sin?s (1~ 0) 2 sind+£q¥apcos 5+ af [ﬂ — 2732~ zo]
2 o R3 R®
U l—al cvtq2 ' 1—o . 2 5 d c 3¢°
@ TR 2R3 I - Jg sin? § (1~ a)2Ypsiné _ﬁ+&ﬁ[l_ﬁ]
1- . 3z
- = q¥n — §q3Y32 ¢ Yo - aa Jg sin” § —(1-o [E — Y, cos 5] _u[ ;’;‘1 —qu]

Jy=Jscos 8 —Jgsind Réji&.Du |: K= coEs z [D11~¥11sin 8] (Kl =
Ja:c;j[Kl—Jﬂi“‘s] (J3 (R+d)7[q —%] if cus6=0) E I{2=%+Isgsm6

Js=—£Y11—J cos 6-+Jasin & J5=—[(1'+R”Tz~] Dy E Ks=— [qYu—yDu] ( K= sin §
Jstcﬂols—a[l(g—.fssiné] (JG= (R+d)"[£2 _15 if cos5=0) E Ky=¢Yi1cos 5 ~Kysiné Dy=

£e =Dy if cos §=0)
d

[gzDu—l] if cos§= 0)

_1_
R(R+d)
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Discussion

In the preceding sections, a complete set of closed analytical expressions was
derived in a unified manner for the internal displacements and strains due to
shear and tensile faults in a half-space for both point and finite rectangular
sources. We have basically followed Iwasaki and Sato’s (1979) formulation,
adding the new expressions for internal deformation fields due to a general
point tensile source and a vertical finite tensile fault, as well as the internal
strain field due to an arbitrary point source. Obtained formula were presented
with table forms in Tables 2 through 9. Since they are particularly compact and
systematic, they will not only save computational costs but also diminish
probable coding errors.

All the formula are composed of infinite medium terms (part A), a surface
deformation related term (part B), and a depth multiplied term (part C). As a
subset of these formula, the deformation in an infinite medium can be expressed
by a term that includes u$(x, y, — 2) for point sources and fA(%,7, — 2)| for
finite faults. Also, the surface deformation can be expressed by the following
subset:

u(x,y,0) = ug(x, y,0)

Ju Ju

'-(x,y,o) = __B(x7 yaO) (18)
du dug

a_y'(xyy’ )_ 6y (.’)C,y,O) (20)
Ju du, dug (21)
E(x, y,0) = Z—a—z—(x,y,O) + —a—z—(x, ¥,0) + ug(x, y,0).

Next, let us discuss the mathematical singular points that are included in the
expressions derived in the previous sections. We will investigate practical
methods to avoid these mathematical singularities, as well as ways to avoid the
computational instabilities that occasionally arise for some special conditions
and cause trouble in the course of numerical calculation.

In the case of a point source, the problem is simple. The equations listed in
Tables 2 through 5 become singular only when R = 0, because the factor
R + d, which is included in the denominators of I°, J°, and K° is always
positive unless R = 0. The case R =0 occurs when an observation point
coincides with the source position. Since this kind of singularity is so essential,
we cannot remove the difficulty. The practical way to avoid the trouble is to set
the output to a flag for a sufficiently small R.

In the case of a finite rectangular source, we also cannot escape from the
essential singularities that arise when an observation point lies on the fault
edges. We must set the output to a flag, as before. Apart from these intrinsic
singularities, there exist other kinds of mathematical singularities, which can
be classified in the following four categories. They arise at special points, as
illustrated in Figure 5. For these singular points, we can avoid trouble by
applying the following rules to the equations in Tables 6 through 9. These rules
were found by returning to the integral (13) and carefully checking each special
case.
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Fic. 4. Physical meaning of some constants and variables that are related to an image fault
surface and appear in Tables 6 through 9. The axes, (p) and (¢), which are related to the real fault,
correspond to the p and g axes for the image fault. The positive x axis is out of the page.

(i) When ¢ = 0 (this occurs on the planes that include the fault surface and
its image), set © in Table 6 to be zero.

(ii) When ¢ = 0 (this occurs on the vertical planes that include the edges that
are perpendicular to the fault strike), set I, in Table 6 to be zero.

(iii) When R + ¢ = 0 (this occurs along the lines extending the edges that
are parallel to the fault strike and x < 0), set all the terms that contain R + ¢
in their denominators to be zero and replace In(R + £) to —In(R — &).

(iv) When R + 5 = 0 (this occurs along the lines extending the edges that are
perpendicular to the fault strike and p < 0), set all the terms that contain
R + % in their denominators to be zero and replace In(R + ) to —In(R — 7).

On the fault surface excluding its edges, the above rule (i) sets the displace-
ment parallel to dislocation vector to the average of the displacements at both
sides of the fault, while all the other components are kept to be continuous
across the fault surface.
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<

(b)

F1G. 5. The places where mathematical singularities appear in the expressions for the deforma-
tion field due to a finite rectangular source. Shaded parts show the fault plane and its projection
onto the free surface. Marks (i) to (iv) correspond to the conditions described in the text. (a) is for
the case, sin 8 > 0, while (b) is for sin 6 < 0.
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In the practical situations, there are two problems with applying the above
four rules. First, even if one of the above conditions is met mathematically, the
numerical condition may not be satisfied because of computational errors.
Second, if the condition is not exactly satisfied but is nearly satisfied, the
numerical results may give unreasonably big values. To overcome these diffi-
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Fic. 6. An example of the internal deformation field due to an inclined dip-slip fault. Figure 8
shows the configuration of the fault model and the gbservation plane which crosses the fault
surface. (a) Contour map of the volume dilation. A parallelogram shows the projected fault surface.
The solid line shows part of the fault plane that lies above the observation plane, while the dashed
line shows one below the observation plane. (b) Vector map of the in-plane displacements. (c)
Distribution of the 3-D principal strain projected onto the observation plane.
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culties, one can apply the above rules when the quantities, £, », or ¢ becomes
sufficiently small rather when they are exactly zero. By the same reason, the
alternate expressions for I, J, and K needed for the calculation of vertical
faults (6= 7 /2) in Tables 6 through 9 should be used when cos § is sufficiently
small rather when it is exactly zero.

NuMEeRIcAL RESULTS

Based on the presentations in Tables 2 through 9 and taking into account the
practical considerations discussed in the preceding section, we have established
a computer program to calculate internal deformation fields due to a multiple
source that can be arbitrarily composed of shear and tensile faults of both point
and finite rectangular types. The program can draw contour, vector, or tensor
maps of in-plane or normal components of displacement and strain on an
observation plane arbitrarily oriented in the half-space. Figure 6 shows an
example of the output from this program system. Here, a contour map of volume
dilatation, a vector map of in-plane displacements, and a distribution of pro-
jected 3-D principal strain are displayed on a plane crossing the fault surface
(Fig. 8 shows the fault configuration).

As another example of the numerical calculation, Figure 7 illustrates the
schematic 3-D deformation of an elastic half-space due to slip on a buried
vertical strike-slip, dip-slip, or tensile fault. The figure shows a 50 x 50 x 50
km cube within an elastic body assuming that the top of the cube represents the
free surface. A vertical fault is assumed to be located at the center of the block
with a length of 20 km and a height of 10 km, occupying a depth range from 10
to 20 km. Three perpendicular arrows denote the displacement amplitude in
units of 0.1U, where U stands for the dislocation amount.

Next, let us see an example of the depth dependency of the strain and tilt
fields due to a buried finite rectangular source. As is illustrated in Figure 8, the
size of the fault is assumed to be 12 X 8 km, and the slip is 50 cm. These
parameters approximately represent a magnitude 6 earthquake source. Assum-
ing A=y, ¢c=10 km, and 6 = 40°, the strain and tilt beneath an observation
point (x, y) = (25, 15 km) were evaluated. For the case of the tilt observations,
we should be careful because of the difference between the physical quantity
observed by water-tube tiltmeters and that by pendulum-type borehole tilt-
meters. The former measures du, /dx, whereas the latter measures du, /dz. On
the ground surface, both quantities coincide in amplitude with each other,
because o,, = w(du,/dx + du,/d2) must vanish at the free surface of a
half-space.

Figure 9 shows the depth variation of the above quantities, du,/dx and
—du, /dz, as well as that of an areal dilatation A = du, /dx + du,/dy. Accord-
ing to this figure, the strain or tilt rapidly changes even at very shallow depths.
So, when we use strain or tilt data observed in sufficiently deep boreholes, we
must be cautious to compare the observation with theory.

To any interested researchers, the author is ready to provide the source code
for subroutine programs that correspond to Tables 2 through 9.

ACKNOWLEDGMENTS

A part of this study was advanced during the author’s stay in U. S. Geological Survey in Menlo
Park. He is grateful to Drs. M. Johnston and P. Segall for critical reading of the manuscript and for

many useful suggestions to help make this paper clear. Also, the discussions with Drs. R. Wesson
and W. Thatcher were stimulating to accomplish this work.



1038 Y. OKADA

STRIKE

0.

i
750N
TSI

TSSO
ﬁullllll[[,,/l[,;lo,:,ve‘

DIP TENSILE

5
55

s
s
TS
7 %
L5

X
3

3
R0

N

R
X
X

X
X
X

7
ey i
il 0y

i
"'f';l'/' 5%
%

™
R
R
R
R

17!
1l

\““

¥

N
S

R

S
R
X
R
3

N

i
I

S
2
R

X

Fig. 7. Schematic 3-D deformation of an elastic half-space due to slip on a vertical strike-slip,
dip-slip, or tensile fault. The block has a size of 50 km, the top of which corresponds to the free
surface. The vertical fault is 20 km long and 10 km wide extending from 10 to 20 km depth. U
stands for the dislocation amount.

z

Fic. 8. An example of the tilt observations at ground surface and in a borehole. Note that a

water-tube tiltmeter (WTT) measures du, /dx, while a borehole tiltmeter (BHT) measures du, /3z.
A shaded oblique plane crossing the faulf surface corresponds to the observation plane in Figure 6.
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Fic. 9. The depth dependency of du,/dz, —du,/dx and areal dilatation A = du, /dx + du,/dy

beneath the observation point illustrated in Figure 8. A unit of strain is 10~¢,
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